Reference Manual

FOR TRANSIT Automatic Coding System
for the IBM 650 Data Processing System

RESEARCH COMPUTER LABORATO:..

IBM Reference Manual
FOR TRANSIT Automatic Coding System
for the IBM 650 Data Processing System

© 1957 and 1959 by International Business Machines Corporation

PREFACE

FOR TRANSIT is an automatic coding system for the IBM 650 Data
Processing System. By superimposing a translator on the compiler*
developed at the Carnegie Institute of Technology, FOR TRANSIT
makes available to 650 users the language of FORTRAN. FORTRAN,
a language developed for the IBM 704, closely resembles the
language of mathematics; it was designed primarily for scientific
and engineering computation. FOR TRANSIT in effect transforms
the 650 into a machine with which communication can be made in a
language more concise and more familiar than the 650 language
itself. The result should be a considerable reduction in the training
required to program, as well as in the time consumed in writing
programs and eliminating programming errors.

This manual will serve as a reference for both FOR TRANSIT I
and FOR TRANSIT II inasmuch as the language and procedures of the
two versions are essentially the same. FOR TRANSIT I is designed
for the basic machine and FOR TRANSIT II for the 650 equipped
with indexing registers and automatic floating decimal arithmetic.
Both versions of the system were revised and re-issued late in
1958 and this reference manual reflects the changes made in the
system.

* Internal Translator (IT) A Compiler for the 650, by A. J. Perlis,
J. W. Smith, and H. R, Van Zoeren, Computation Center, Carnegie
Institute of Technology. (See IBM 650 Library Program Abstract
2.1.001.)

TABLE OF CONTENTS

INTRODUCTION . . [.,
Example of a FOR TRANSIT Program
Description of the System
Machine Requirements
Program Decks.
Outline of Manual

..........
.................

..................

CHAPTERTI - WRITING THE SOURCE PROGRAM . = = .
Statements and Statement Numbers . . ., ,
Constants, Variables, and Subscripts.
Functions, Expressions, and Arithmetic Formulas
Control Statements.
Input-Output Statements
Specification Statements
Summary of FORTRAN Sequencing
Examples and Explanatory Notes

..................

............

.............

CHAPTER IT - INCORPORATING SUBROUTINES
Built-In Subroutines . . . « . . .+ o 0.0 0.
Adding Function Subroutines.
Writing Function Subroutines
Use of Indexing Registers: FOR TRANSIT II and II(S) . .
Example of Incorporated Subroutine.
Other Requirements« . « . . o v o o ..

CHAPTER ITI- PROCESSING THE SOURCE PROGRAM ..
Preparing the Statement Cards
Preparing the Function Title Cards
Operating Instructions - - -« - « « . « . .« o o Lo

Phase I (Translation). -
Phase II (Compilation) . . . « « « « . « .« . o . ..
Phase III (Assembly)
Summary of Operating Procedure

CHAPTER I¥ - USING THE OBJECT PROGRAM

Preparing Data Cards - - - . . « o oo
Executing the Object Program - . . -«

APPENDIXES o e e e e e
Appendix A - Wiring Diagrams
Appendix B - Listings of Sample Problem Cards.
Appendix C - Glossary.

11
14
19
21
22
23

30
30
30
32
34
34
34

INTRODUCTION

A FOR TRANSIT program consists of a sequence of FORTRAN
statements. The following brief program will serve to illustrate
the general appearance and some of the properties of a FOR TRANSIT

program.
Example of a
FOR TRANSIT c“"""‘ FORTRAN STATEMENT
Program s |
,l 8| s r . _ M'
lc: PROGRAM FOR FINDING THE LARGEST VALUE —
ci X ATTAINED BY A SET OF NUMBERS
BIGA = A(1)
: DO20 I1=2,N
: IF (BIGA - A(1)) 10, 20, 20 _
10 BIGA = A(1)
i 20 CONTINUE J‘
This program examines the set of n numbers a;(i= 1, ..., n) and

sets the quantity BIGA to the largest value attained in the set. It
begins (after a comment describing the program) by setting BIGA
equal to a;. Next the DO statement causes the succeeding state-
ments to and including statement 20 to be carried out repeatedly,
first with i = 2, then with i = 3, etc., and finally with i = n.

During each repetition of this loop the IF statement compares BIGA
with a;; if BIGA is less than aj, statement 10, which replaces BIGA
by aj, is executed before continuing.

Description of The FOR TRANSIT system consists of three major parts:
the System
1. The translator, FOR TRANSIT, which accepts FORTRAN
statements and produces corresponding IT statements.

2. The compiler, a modification of IT, which accepts IT
statements and compiles 650 instructions in symbolic
(SOAP II) language.

3. The assembler, a modified version of SOAP II*, which
produces an optimized machine language program from
the symbolic instructions.

* SOAP 11, Symbolic Optimal Assembly Program for the IBM 650
Data Processing System (See SOAP II Programmer's Reference
Manual, Form C28-4000.)

Each of these parts requires a pass on the 650 . The passes
are referred to as translation phase, compilation phase, and
assembly phase, or more simply as phases I, II, and III. The
programmer need concern himself only with the FORTRAN
language since the translation, compilation, and assembly phases
are completely automatic. The FORTRAN language program is
referred to as the source program; the 650 language program,
which is available at the completion of phase IIl, is referred to as
the object program. A schematic representation of the over-all
system is shown in Figure 1.

FORTRAN
Statements

FOR TRANSIT 650
Deck Translate to IT

1T .
Statements
650

IT Deck Compile Symbolic
Program

Symbolic
Program
650

SOAP
Package Assemble
Object
Program

Figure 1

i

Phases I and II of the FOR TRANSIT system are designed to
permit multiple processing of source programs. By translating
several source programs while the FOR TRANSIT program is in
memory, then compiling the same programs on the second pass,
considerable savings of machine time and card handling may be
effected.

Machine The FOR TRANSIT system is presently available in two versions

Requirements which are designated FOR TRANSIT I and FOR TRANSIT II. In
order to make the system as widely applicable as possible, each
of the two versions is provided in two forms corresponding to
different equipment specifications as indicated in the following
paragraphs.

FOR TRANSIT I, which produces object programs for the
basic 650, is available in these forms:

1. The standard FOR TRANSIT I is designed to run on a 650
equipped as indicated below. Note that the special charac-
ter device is not required even though the input cards for
the system contain special characters.

2000 word drum

Alphabetic device

20 pilot selectors (10 are standard)

16 co-selectors (8 are standard)

10 read code and 10 punch code selectors
1 half-time emitter (read side)

2. FOR TRANSIT I (S) is provided for those installations in
which the 650 is equipped with a special character device.
The specific equipment requirements are as follows:

2000 word drum
Alphabetic device
Special character device (Group II)

FOR TRANSIT II produces object programs designed to be run
on the IBM 650 equipped with indexing registers and automatic
floating decimal arithmetic. These additional features are not re-
quired, however, on the processor, i.e., the 650 on which the object
program is compiled. FOR TRANSIT 1I, as well as I, is available
in two forms to provide for different configurations of equipment.
FOR TRANSIT II runs on the same machine as specified for FOR
TRANSIT I, and the machine requirements for running FOR TRANSIT
I1(S) are identical to those for FOR TRANSIT I(S).

Program Decks The several program decks for the FOR TRANSIT system may be
obtained from IBM Applied Programming Publications. Requests
should specify the version desired, i.e., FOR TRANSIT I, KS),
II, or II(S), and should be addressed to:

Qutline
of Manual

IBM 650 Program Librarian

Applied Programming

International Business Machines Corporation
590 Madison Avenue

New York 22, New York

In order to facilitate the filling of requests, the various card
decks in the system deck packages will not be labeled individually,
but can be identified by the high order digit end-printed on the
cards as indicated below:

Deck No. Deck Name
1 FOR TRANSIT deck
2 IT (Compiler) deck
3 SOAP-PACKAGE deck

The cards in each deck will be end-printed serially (in the
three low order positions) beginning with 001.

The FOR TRANSIT system will be presented in four sections. A
glossary of some of the terms peculiar to the computing vernacular
is included for reference in Appendix C. The manual proceeds as
follows:

1. How to write the source program.

This includes a definition of constants, variables, and
subscripts; the types of FORTRAN statements are
described and examples given of each.

2. Incorporating of subroutines.

A subroutine is a program that is integrated into a
larger program. Subroutines are used for such things
as the evaluation of a function, e.g., square root. A
number of subroutines are included in the system, e.g.,
computing integral exponentials, reading in data and
punching out results. In this chapter the built-in sub-
routines as well as rules for incorporating subroutines
not included in the system are discussed.

3. Processing the source program.

The preparation of statement cards is covered, as
well as operating instructions for phases I, 1I, and III.

4. Using the object program.

Card format for data used by the object program as
well as the actual executing of the object program is
included in the final chapter.

5. Appendixes.

Wiring diagrams, listings of sample cards and a
glossary of terms are included in the Appendixes.

CHAPTER I - WRITING THE SOURCE PROGRAM

Consider the algebraic formula for one of the two roots of a
quadratic equation:

Root = [-B+ /82 - 4AC] /2A

The FORTRAN language statement which creates a machine
language program for this calculation is as follows:

Root = (-B +SQRTF(B**2 - 4.0*A*C)) / (2.0*A)
where:

1. The meaning of the statement is: evaluate the expression
on the right side of the equal sign and make this the value
of the variable on the left side of the equal sign.

2. The symbol * denotes multiplication.

3. The symbol ** denotes exponentiation, e.g.,
A**3 means A3.

4. SQRTF (arg) is a subroutine which computes the square
root of the argument enclosed in parentheses.

Source programs for the FOR TRANSIT system consist of a
sequence of FORTRAN language statements. FORTRAN statements
may be grouped into four classifications: arithmetic statements,
control statements, input/output statements, and specification

statements. The statement above for the root is an example of an
arithmetic statement. The following'list includes all of the
FORTRAN statements which are permissible in the FOR TRANSIT
system:

A. Arithmetic statements
e.g.,a=b

B. Control statements

1. GOmn
2. GOTO(n], ng ..., Npy), i
3. IF (a) nj, ny, n3

Statements
and Statement
Numbers

4. PAUSE

5. STOP

6. DOni=mj, mg
DOni=mj, my mg

7. CONTINUE

8. END

C. Input/output statements

1. READ n, list
2. PUNCH n, list

D. Specification statements

1. DIMENSION YV, V, V,
2. EQUIVALENCE (a, b, c), (d,€)....

The FORTRAN system was designed for a more complex
machine than the 650, and consequently some of the 32 statements
found in the FORTRAN Programmer's Reference Manual are not
acceptable to the FOR TRANSIT system. In addition, certain
restrictions to the FORTRAN language have been added. However,
none of these restrictions make a source program written for
FOR TRANSIT incompatible with the FORTRAN system for the IBM
704. For example, whereas FORTRAN variables may consist of
from one to six characters in the FORTRAN system, FOR TRANSIT
requires that variables consist of from one to five characters. It
should be noted that in a few instances FORTRAN restrictions have
been relaxed to take advantage of certain features of the 650;

-, specific information regarding such modifications is included at
the applicable places in the following pages for the benefit of users

concerned with compatibility.

The following pages are devoted to a formulation of the rules
for constructing FORTRAN statements and for using them to write
a FORTRAN language program. The last part of this chapter in-
cludes some brief examples of FORTRAN programs with
explanatory notes.

Statements

Each statement is punched in one or more cards. Maximum state-
ment length is 125 characters, exclusive of blanks. (For statement
and comments cards formats and punching details, see Chapter III.)

Constants,
Variables, and
Subscripts

Statement Numbers

The order of statements is governed solely by the order of the
cards. However, cross-referencing within a program may be
accomplished by assigning statement numbers to those statements
referred to. Any unsigned fixed point constant from 0001 to 0999
may be used as a statement number.

Statements need not be in numerical order nor do all state-
ments need statement numbers. In FOR TRANSIT I and II
unnumbered statements are preceded by zeros since the statement
number field of the card must contain numerical punches. In
FOR TRANSIT I (S) and II (S) the statement number field may be
left blank.

FORTRAN statements may refer to constants, variables or entire
arrays of numbers.

Constants
Two types of constants are permissible: fixed point (restricted
to integers), and floating point (characterized by being written with

a decimal point).

Fixed Point Constants

GENERAL FORM EXAMPLES
1 to 10 decimal digits. A preceding 3
+ or - sign is optional. +1
-28987

NOTE: The magnitude of fixed point constants in the FORTRAN
system for the IBM 704 must be less than 32768. FOR TRANSIT
users must comply with this restriction if compatibility is desired.

Floating Point Constants

GENERAL FORM EXAMPLES
1 to 8 decimal digits, with a 17.
decimal point at the beginning, at 5.0
the end, or between two digits. -.0003
A preceding +or - sign is optional. 5.0E3 (=5.0 x 103)
A decimal exponent (a 1- or 2-digit 5.9E+3 (=5.9 x 103
fixed point constant) preceded by 5.0E-7 (=5.0 x 107/)
an E may follow. 5.3E13 (=5.3 x 1013)

The number will appear in the object program as a normalized
single-precision floating point number of the form .xxxxxxxx PP
where PP is the power of 10 with 50 added to avoid negative
exponents.

NOTE: The magnitude of floating point constants in the FORTRAN
system for the 704 must lie between the approximate limits of
10-38 and 1038 . FOR TRANSIT users must comply with this
restriction if compatibility is desired. The magnitude limits of
floating point constants in the FOR TRANSIT system are 10-49
and 1090,

Variables

Two types of variables are also permissible: fixed point (restricted
to integral values) and floating point. Fixed point variables are
distinguished by the fact that their first character isL, J, K, L, M,

or N.

Fixed Point Variables

GENERAL FORM EXAMPLES
1 to S alphabetic or numerical I
characters (not special characters) M2
of which the firstis L,], K, L, M, JOBNO
or N.

Floating Point Variables

GENERAL FORM EXAMPLES
1 to 5 alphabetic or numerical A
characters (not special characters) B7
of which the first is alphabetic but DELTA
not,],K,L, M, or N.

NOTE: 1. The name of a variable must not be the same as the
name of any function used in the program after the terminal F of
the function name has been removed, nor should the name of a
subscripted variable end with an F.

2. A maximum of 100 variables of which 20 may be
subscripted may be used in any one program.

Subscripts and Subscripted Variables

A variable can be made to represent any member of a 1- or 2-
dimensional array of quantities by appending to it 1 or 2 subscripts;
the variable is then a subscripted variable. The subscripts are
fixed point quantities whose values determine which member of the
array is being referred to.

Subscripts
GENERAL FORM EXAMPLES

Let v represent any fixed point I
variable and c (or c¢') any unsigned 3
fixed point constant. Then a MU + 2
subscript is an expression of one MU -2
of the forms Sx*]

v S*J+2

c S*J -2

v+4C or v-Cc

CH*V

cxv+c' or cxv-c'

The variable v must not itself be subscripted.

Subscripted Variables

GENERAL FORM EXAMPLES
A fixed or floating point variable A
followed by parentheses enclosing K (3)
1 or 2 subscripts separated by BETA (5%]-2, K+2)
commas.

For each variable that appears in subscripted form, the size of
the array, i.e., the maximum values which its subscripts can
attain, must be stated in a DIMENSION statement preceding the
first appearance of the variable.

The minimum value which a subscript may assume in the object
program is +1.

NOTE: A 2-dimensional array A will, in the object program, be

stored sequentially in the order Al, 1’ A2 1 e Am I’ Al 2
A, 2 -+ Ay 2 -+ Ay . Thus it is stored "columnwise", with

10

Functions,
Expressions, and
Arithmetic
Formulas

the first of its subscripts varying more rapidly. l-dimensional
arrays are of course simply stored sequentially.

Of the various FORTRAN statements, it is the arithmetic formula
which defines a numerical calculation that the object program is
to do. A FORTRAN arithmetic formula resembles very closely a
conventional arithmetic formula; it consists of the variable to be
computed, followed by an " =" sign, followed by an arithmetic
expression. For example, the arithmetic formula

Y = A - SINF (B-C)
means ''replace the value of y by the value of a-sin (b-c)."
Functions
As in the above example, a FORTRAN expression may include the
name of a function (e.g., the sine function SINF), provided the

routine for evaluating the function is available to the FOR TRANSIT
system.

GENERAL FORM EXAMPLES
The name of the function is 4 or 5 SINF(A +B)
alphabetic or numerical characters SQRTF(SINF(A))
(not special characters), of which XABSF(3.*X)

the last must be F and the first must SAMPF(A, B, C)
be alphabetic. Also, the first must
be X if and only if the value of the
function is to be fixed point. The
name of the function is followed by
parentheses enclosing the argument
(which may be expressions).

The FOR TRANSIT system has some built-in subroutines for
evaluating functions. However, provision is made for the user to
incorporate up to ten subroutines in any one program. Detailed
information concerning the inclusion of subroutines is given in
Chapter II. For the purposes of this section it will suffice to in-
dicate that by means of function title cards prepared by the user,
an internal table of function subroutines is created in the
FOR TRANSIT system. When a source program is being processed,
any function encountered will be checked against the table, and an
appropriate entry will be generated by the system.

The X character in function names is meaningless in the
FOR TRANSIT system but is specified for compatibility with

11

704 FORTRAN. Compatibility also requires that any function name
used in a source program represent a subroutine available to the
FORTRAN system.

Expressions

An expression is any sequence of constants, variables (subscripted
or non-subscripted), and functions, separated by operation sym-
bols, commas, and parentheses so as to form a meaningful mathe-
matical expression. The mode of arithmetic in expressions may
be either floating or fixed point. When the mode is mixed, i.e.,
the expression includes both floating and fixed point variables, the
arithmetic will be performed in the floating point mode. FOR
TRANSIT users concerned with compatibility of programs with the
704 FORTRAN system are cautioned regarding mixed expressions;
the mixing of modes is permitted in the FORTRAN system only
under certain conditions as noted in the FORTRAN manual.

Brief rules for forming expressions follow.

1. The five basic operations of the system are specified by the
symbols + -, *, /, and **, which denote addition, sub-
traction, multiplication, division, and exponentiation, re-
spectively.

2. Two operation symbols may not appear in sequence. Thus
A* - Bis not a valid expression, but A*(-B) is valid.

3. When the hierarchy of operations in an expression is not
completely specified by parentheses, the order of operations
(working from inside to outside) is assumed to be exponen-
tiation, then multiplication and division, and finally addition
and subtraction. Thus the expression A +B/C +D**E*F - G
will be taken to mean A +(B/C) +(DE-F) - G.

4. When the sequence of consecutive operations of the same
hierarchal level (i.e., consecutive multiplications and
divisions) is not completely specified by parentheses, the
order of operations is assumed to be from left to right for
floating point variables, and from right to left for fixed
point variables. For instance, the expression A*B/C*D is
taken to mean ((A*B)/C)*D; and the expression I*]/K*L is
taken to mean I*(J/(K*L)).

5. The expression ABC , which is sometimes considered

meaningful, cannot be written as A**B**C; it should be
written as (A**B)**C or A**(B**C), whichever is intended.

12

LN

The following are some examples of correct and incorrect ways
of forming expressions in FORTRAN language.

The expression should not be written as but should be written
A/-B A/-B A/(-B)
ABor A - B AB A*B
Alt2 A**] +2 A**(1+ 2)
alt2. A**1 + 2*B A**(1+2)*B
AB * * * *
o) A*B/C*D (A*B) / (C*D)
or
A*B / (C*D)
or
A/C*B/D

Modes of Arithmetic in Exponentiation

FOR TRANSIT has built-in provision for handling exponentiation as
follows:

1. A plus or minus fixed point quantity or a plus or minus
floating point quantity may be raised to a power which
is a plus or minus fixed point quantity.

2. A plus or minus floating point quantity may be raised
to a power which is a plus or minus floating point S
quantity . :

NOTE: This operation will give the absolute value of
the quantity raised to the plus or minus power.

Exponentiation conforming to these specifications is handled
by subroutines contained in the SOAP - PACKAGE deck and thus
is actually performed at object program time.

Verification of Correct Use of Parentheses

The following procedure is suggested for checking that the paren-
theses in a complicated expression correctly express the desired
operations.

Label the first open parenthesis "1"; thereafter, working from
left to right, increase the label by 1 for each open parenthesis and

13

Control
Statements

decrease it by 1 for each closed parenthesis. The label of the
last parenthesis should be 0; the mate of an open parenthesis
labeled n will be the next parenthesis labeled n - 1.

FOR TRANSIT permits a maximum nest of nine parentheses.

Arithmetic Formulas

GENERAL FORM EXAMPLES

"a = b" where a is a variable A(I) = B(I)+SINF(C (I))
(subscripted or not subscripted)
and b is an expression.

The " = " sign in an arithmetic formula has the meaning "is to be
replaced by." An arithmetic formula is therefore a command to

compute the value of the right-hand side and to store that value in
the storage location designated by the left-hand side.

The result will be stored in fixed or floating point form accord-
ing as the variable on the left-hand side is a fixed or floating point
variable.

If the variable on the left is fixed point and the expression on
the right is floating point, the result will first be computed in
floating point and then truncated and converted to a fixed point
integer. Thus, if the result is +3.569 the fixed point number
stored will be +3, not +4.

Examples of Arithmetic Formulas

FORMULA MEANING

A=B Store the value of Bin A.

I1=B Truncate B to an integer, convert to fixed
point, and store in I.

A=l Convert I to floating point and store in A.

I=1 +1 Add 1 to I and store in I. This example
illustrates the point that an arithmetic
formula is not an equation but a command
to replace a value,

A=3.0+*B Replace A by 3B.

The second class of FORTRAN statements is the set of eight
control statements, which enable the programmer to state the
flow of his program.

14

Unconditional GO TO

GENERAL FORM

EXAMPLES

"GO TO n" where n is a statement
number.

GO TO 3

This statement causes transfer of control to the statement with

statement number n .

Computed GO TO

GENERAL FORM

EXAMPLES

"GO TO (nly n2, ey Ilm), i"

where n;, n2, ..., 1__are

m
statement numbers and i is a

non-subscripted fixed point
variable.

GO TO (30, 40, 50, 60), I

If at the time of execution the value of the variable i is j, then
control is transferred to the statement with statement number n;.
Thus, in the example, if I has the value 3 at the time of execution,

a transfer to statement 50 will occur.

This statement is used to obtain a computed many-way fork.
A maximum of nine branches may be used in any one of these

statements.

IF

GENERAL FORM

EXAMPLES

"IF (a) nj, ny, ng" where a is any
expression and nj, np, nj are state-
ment numbers.

IF (A(J, K)-B) 10, 20, 30

Control is transferred to the statement with statement number
nj, ny, or ng according as the value of the expression a is less

than, equal to, or greater than zero.

PAUSE
GENERAL FORM EXAMPLES
"PAUSE" or "PAUSE n " where n PAUSE
is any unsigned fixed point constant PAUSE 1234

15

A PAUSE statement compiles as a stop command. During execution
of the object program, the machine will halt. A subsequent
depression of the program start key will cause resumption of
operation at the point in the object program corresponding to the
next FORTRAN statement. The n part of the PAUSE statement

is disregarded by FOR TRANSIT but may be included for compati-
bility with 704 FORTRAN.

STOP
GENERAL FORM EXAMPLES
" STOP " or " STOPn " STOP
STOP 1234

A STOP statement compiles as a stop command. During execution
of the object program, the machine will halt. A subsequent
depression of the program start key will cause the resumption of
operation at the point in the object program corresponding to the
next FORTRAN statement. The n part of the STOP statement is
disregarded by FOR TRANSIT but may be included for compatibility
with 704 FORTRAN.

NOTE: PAUSE and STOP are identical in the FOR TRANSIT system.

Do
GENERAL FORM EXAMPLES
"DOni= my, m2" or'"'DOni DO 301=1,10
= m,, m,, m3" where n is a state- DO 30I=1,M,3

ment number, i is a non-subscripted
fixed point variable, and my, My,
mg are each either an unsigned fixed

point constant or a non-subscripted
fixed point variable. If mg is not

stated it is taken to be 1.

The DO statement is a command to "DO the statements which
follow, to and including the statement with statement number n,
repeatedly, the first time with i = mj and with i increased by mg
for each succeeding time; after they have been done with i equal to
the highest of this sequence of values which does not exceed m,

let control reach the statement following the statement with
statement number n ."

16

The range of a DO is the set of statements which will be
executed repeatedly; it is the sequence of consecutive statements
immediately following the DO, to and including the statement
numbered n .

The index of a DO is the fixed point variable i, which is con-
trolled by the DO in such a way that its value begins at m; and is
increased each time by mg until it is about to exceed m, . Through-
out the range it is available for computation, either as an ordinary
fixed point variable or as the variable of a subscript. During the
last execution of the range, the DO is said to be satisfied.

Suppose, for example, that control has reached statement 10
of the program

10 DO111=1, 10
11 A (D) = I=N (I)
12

The range of the DO is statement 11, and the index is I. The
DO sets I to 1 and control passes into the range. 1N(1) is
computed, converted to floating point, and stored in A(1). Now,
since statement 11 is the last statement in the range of the DO
and the DO is unsatisfied, 1 is increased to 2 and control returns
to the beginning of the range, statement 11. 2N(2) is computed and
stored in A(2). This continues until statement 11 has been executed
with I = 10. Since the DO is satisfied, control now passes to
statement 12,

DOs within DOs Among the statements in the range of a DO
may be other DO statements. When this is so, the following
rule must be observed:

Rule: If the range of a DO includes another DO, then all of the
statements in the range of the latter must also be in the range
of the former. A set of DOs satisfying this rule is called a
nest of DOs. A nest must not exceed a depth of four DOs.

Transfer of Control and DOs Transfers of control by IF-type
or GO TO-type statements are subject to the following rule:

Rule: No transfer is permitted into the range of any DO from
outside its range. Thus, in the configuration below, 1, 2 and 3
are permitted transfers, but 4, 5 and 6 are not.

17

EXCEPTION: There is one situation in which control can be
transferred into the range of a DO from outside its range.
Suppose control is somewhere in the range of one or more DOs,
and that it is transferred to a section of the program, completely
outside the nest to which those DOs belong, which makes no
change in any of the indexes or indexing parameters (m's) in

the nest. Then after the execution of this section of program,
control can be transferred back to the ""same part of the nest”
from which it originally came. (By "same part of the nest" is
meant that no DO, and no statement which is a last statement in
the range of a DO, shall lie between the exit point and re-entry
point.) This provision makes it possible to exit temporarily from
the range of a DO to execute a subroutine.

Preservation of Index Values The current values of all the
indexes controlled by DO's are preserved for any subsequent
use, until redefined.

For compatibility with 704 FORTRAN, after a normal exit
from a DO, the value of the index controlled by that DO is not
defined and cannot be used until redefined. A normal exit is
defined as control passing to the statement following the range
after the DO statement is satisfied.

Restriction on Calculations in the Range of a DO The only type
of statement not permitted is one which redefines the value of
the index or of any of the indexing parameters (m's); the index-
ing of a DO loop must be set before the range is entered. This
indexing is accomplished by the DO statement. FOR TRANSIT II
utilizes indexing registers which cannot be set by data cards,
and the values of mj, my, and m3 must be < 2000.

CONTINUE

GENERAL FORM EXAMPLES

"CONTINUE" CONTINUE

18

Input-Output
Statements

CONTINUE is a dummy statement which gives rise to no instruc-
tions in the object program. A frequent use is as the last state-
ment in the range of a DO to fill the requirement that the last
statement in the range cannot be a transfer statement. As an ex-
ample of a program which requires a CONTINUE, consider the
table search program

10 DO 121 = 1,100

11 IF (ARG-VALUE(D)) 12, 20, 12
12 CONTINUE

13

This program will examine the 100-entry VALUE table until it
finds an entry which equals ARG, whereupon it will exit to state-
ment 20 with the successful value of I available for fixed point use;
if no entry in the table equals ARG a normal exit to statement 13
will occur. The following program

10 DO 111=1, 100
11 IF (ARG-VALUE(®)) 11, 20, 11
12

would not work since DO-sequencing does not occur if the last
statement in the range of a DO is a transfer.

END

GENERAL FORM EXAMPLES =~

"END" END *

The END statement must be the last statement of the program.
(The END statement for 704 FORTRAN requires additional
information.)

The FOR TRANSIT system presently allows for input and output
of data by means of punched cards using the FORTRAN statements
READ and PUNCH which are described below and in Chapter IV.

LIST: Three types of variables may be specified in a READ or

————

PUNCH statement "LIST".
1. Non-subscripted variable

2. One member of an array; ELMNT (2, 5), or ELMNT (2,]),
or ELMNT (1,])

19

3. An entire array, by giving only the name of the array,
ELMNT,

A maximum of ten variable names may be given in a "LIST".

READ
GENERAL FORM EXAMPLES
"READ, LIST" or READ, A, B, C
"READ n, LIST" where n may READ 1, A,B, C
be a 1-4 digit fixed point constant READS2, X, Y
and LIST is as described above.

The READ statement causes the object program to read cards.
Record after record (card after card) is read until the complete
List has been brought in and stored. The n portion of the READ
statement is optional in the FOR TRANSIT system but may be in-
cluded if compatibility with the FORTRAN system for the IBM 704
is desired.

PUNCH

GENERAL FORM EXAMPLES

"PUNCH, LIST" or PUNCH, ROOT 1, ROOT 2
"PUNCH n, LIST" where n may PUNCH 1, ROOT

be a 1-4 digit fixed point constant PUNCH 32, ARRAY

and LIST is as described above. PUNCH 1, ELMNT (2, 5)

The PUNCH statement causes the object program to punch cards.
Record after record (card after card) is punched until the complete
List has been punched. The n portion of the PUNCH statement is
optional in the FOR TRANSIT system but may be included if com-
patibility with the 704 FORTRAN system is desired.

Conditional PUNCH

As a diagnostic convenience, a conditional form of the PUNCH
statement is provided. Any PUNCH statement which is not
numbered will produce, in the object program, a Punch command
which can be controlled by the setting of the storage entry sign
switch: In the object program with the sign switch set to minus (-),
punching occurs; when set to plus (+), punching is bypassed.

20

Specification
Statements

DIMENSION
GENERAL FORM EXAMPLES
"DIMENSION v, v, Vv, ... " where DIMENSION A(10),
each v is a variable subscripted B(5, 15), C(3, 4)

with 1 or 2 unsigned fixed point
constants. Any number of v's may

be given.

The DIMENSION statement provides the information necessary to
allocate storage in the object program for arrays of quantities.

Every variable which appears in the program in subscripted
form must appear in a DIMENSION statement, and the DIMENSION
statement must precede the first appearance of the variable. In
the DIMENSION statement are given the desired dimensions of the
array; in the executed program the subscripts of that variable must
never take on values larger than those dimensions.

Thus the example states that B is a 2-dimensional array and
that the subscripts of B will never exceed 5 and 15; it causes 75
words of storage to be set aside for the B array.

A single DIMENSION statement may be used to specify the
dimensions of any number of arrays.

EQUIVALENCE
GENERAL FORM EXAMPLES
EQUIVALENCE (A, B, C, ...), EQUIVALENCE (A, B, C),
(D’ E’ F’ e -) (D, E)
where A,B,C,D, are
subscripted variables.

The EQUIVALENCE statement enables the programmer, if he
wishes, to economize on data storage requirements by causing
storage locations to be shared by two or more quantities when the
logic of his program permits. It also permits him to call the same
quantity by several different names, and then insure that those
names are treated as equivalent.

The following rules must be observed when using the
EQUIVALENCE statement with the FOR TRANSIT system.

1. EQUIVALENCE statements are restricted to subscripted
variables.

21

Summary of
FORTRAN

Sequencing

2. EQUIVALENCE can only be specified which equates the
first member of each of the respective arrays. Successive
members will be automatically equated. If one of the arrays
in an EQUIVALENCE statement has fewer members than
the array it is being equated with, the EQUIVALENCE ends
with the last member of the smaller array.

3. The EQUIVALENCE statement for a given set of variables
must immediately follow the DIMENSION statement defining
the set.

4. Any number of equivalences (pairs of parentheses) may be
given in an EQUIVALENCE statement.

5. Each equivalence set is limited to five subscripted variable
names, e.g., (A, B,C, D, E) is a maximum equivalence set.

6. A variable name can appear only once in an EQUIVALENCE
statement.

The sharing of storage locations cannot be planned safely with-
out a knowledge of the two types of FORTRAN statements which
when executed at object program time will cause a new value to be
stored in a storage location.

1. Execution of an arithmetic statement stores a new value of
the variable on its left-hand side.

2. Input statements store new values of the variables listed.

The precise laws which govern the order in which the statements
of a FORTRAN program will be executed, and which have been
left unstated up to this point, may be stated as follows:

1. Control begins at the first exécutable statement.

2. If control is in a statement S, then control will next go to
the statement dictated by the normal sequencing properties
of S.

3. EXCEPTION. If, however, S is the last statement in the
range of one or more DOs which are not yet satisfied, and
if S is not a transfer (IF-type or GO TO-type statement),
then the normal sequencing of S is ignored and DO-sequenc-
ing occurs, i.e., control will next go to the first statement
of the range of the nearest of the unsatisfied DOs, and the
index of that DO will be raised.

22

Examples and
Explanatory Notes

4. The statements DIMENSION and EQUIVALENCE are non-
executable statements, and in any question of sequencing
are simply to be ignored.

5. The last statement of each source program must be an END
statement.

This section, which includes some brief and relatively simple
examples of FORTRAN programs with pertinent comments, is
provided to illustrate the process of writing FORTRAN statements
and using them to form a meaningful program. One of the sample
problems shown here appears in Appendix B where it is carried
through each phase of processing to provide a sample of the input
and output for each step, including the running of the object pro-

gram.

1. It may be helpful to refer first to the formula for one of the
roots of a quadratic equation which was mentioned briefly
on the first page of this chapter. The algebraic representation
for a specific case might be written

2
root= ~B+J/BZ-4AC

2A
where A=+3
B=+1.7
C=-31.92

A complete FORTRAN program to provide for making this
calculation and punching the result may be written in six separate
statements as follows:

FORTRAN STATEMENT

A=3,
B=17
C=-31.92
ROOT = (-B +SQRTF(B**2-4.*A*C)) /(2. "A)

11 PUNCH 1, ROOT
i END

The first statement means "assign the value 3. to the variable
A." The next two statements have a similar meaning. The fourth
statement means "evaluate the expression on the right side and
assign the result to the variable ROOT." The last statement in-
structs the computer to stop.

23

The sequential nature of the program should be noted. The
computer executes instructions in the same order as the order of
the statements. For example, if the fourth statement were moved
up and made the first statement, then the computer would evaluate
ROOT before obtaining the desired values of A, B, and C. ROOT
would, therefore, be evaluated using some arbitrary, unknown
values for these variables. The same result could be obtained of
course by writing

ce ™ |
comment é } FORTRAN STATEMENT

statemenr | 8
nunsEn o
s |7 12

ROOT = (-1,7 +SQRTF{1,7**2-4.°3,%(-31.92)))/(2.°3.)
1 PUNCH 1, ROOT
END

in which the actual numerical values appear in the statement des-
cribing the evaluation of ROOT.

Obviously, the foregoing is applicable only to a specific case.
A more likely form of the program is one in which it is possible
to process many sets of data and obtain a root for each set of
values of A, B, and C.

Such a program might be written

c(FoR
comutm| 3 FORTRAN STATEMENT

STATEMENT
NuMsER

READL, A, B C
ROOT = (-B +SQRTF(B**2-4.*A*C))/(2.*A)
12 PUNCH 1, ROOT
GO TO!]

END . -

The first statement causes the computer to read a data card in
which the values of A, B, and C have been punched. The next two
statements remain unchanged from the first program. The fourth
statement provides a transfer to the READ statement, and thus
causes the entire process to be repeated. The last statement is
an END statement which is required in a FOR TRANSIT program.
The object program resulting from this FORTRAN program will
read data cards, compute the roots, and punch out answer cards
as long as there are data cards remaining in the read hopper of
the 533 Read-Punch Unit.

2. In this example, a program is required to determine the cur-
rent in an alternating current circuit consisting of a resistance,
an inductance, and a capacitance, having been given a number
of sets of values of resistance, inductance, and frequency. The

24

current is to be determined for a number of equally spaced values
of the capacitance (which lie between specified limits) for voltages
of 1,0, 1.5, 2.0, 2.5, and 3.0 volts.

The equation for determining the current flowing through such
a circuit is

o E
T 7R-2+[21rfL-_1]2

2mwfC

where current, amperes
voltage, volts
= resistance, ohms

i
E
R
L = inductance, henrys
C
f

capacitance, farads
frequency, cycles per second
T =3.1416

The FORTRAN program could be written as follows:

rom H
¢ <‘°"'“" é FORTRAN STATEMENT
e |
4 17 T2
10 READ i, OHM, FREQ, HENRY
11 READ), FRD 1, FRDMX
12 VOLT=1.0
15 FARAD = FRD 1
14 PUNCH i, VOLT
16 AMP = VOLT/SQRTF(OHM®**2 +(6.2832*FREQ*HENRY
1 -1./(6.2832*FREQ*FARAD))**2)
i7 1, FA| A
18 IF (FARAD - FRDMX) 19, 21, 21
19 FARAD = FARAD +.00000001
20 GO TO 16
21 IF (VOLT - 3.0) 22, 10, 10
22 VOLT = VOLT +0.5
23 GO TO 15
24 END

Statement 10 causes the values of the resistance, the frequency,
and the inductance to be read from the first card, and statement 11
causes the initial and final values of the capacitance to be read
from the next card. The initial value of the voltage is introduced
and punched (statements 12 and 14). Statement 15 causes the
initial value of the capacitance to replace the "current” value of
the capacitance (denoted as FARAD). The actual calculation is
specified by statement 16. The result of that calculation, together
with the current value of the capacitance, is then punched (statement
17).

25

The current value of the capacitance is compared with the final
value to determine whether or not all values have been investigated
(statement 18). If not, the expression is negative and the program
proceeds to statement 19, which causes the value of the capacitance
to be increased by the given increment. This is followed by a
transfer (statement 20) to statement 16 which causes the calculation
to be repeated for the new value of the capacitance. If the expres-
sion in statement 18 is zero or positive, all values of the capac-
itance have been investigated and the program transfers to state-
ment 21.

At this point the value of the voltage is compared with the upper
bound to determine whether or not all specified values of the voltage
have been used. If not, the expression in statement 21 is negative
and the program proceeds to statement 22 which causes the value
of the voltage to be increased. Following this, a transfer (statement
23) is made to statement 15, causing the new value of the voltage
to be punched; and the entire process of investigating all values of
the capacitance is begun again. If all values of the voltage have
been used (the expression in statement 21 is zero or positive), the
calculations for the current set of values of resistance, frequency,
and inductance are finished. The program is returned to statement
10 so that the two cards defining the next case may be read and the
program repeated. This process is repeated until all of the cases
have been considered, i.e., all of the cards have been read.

3. The problem in this example may be stated as follows:

Given X;, Yi’ Zj fori= 1, 10 and J =1, 20 to compute:

10 20
PROD=(Y Ai> (Y zj)
i=1 j=1

where A;=X;2+Y; if1Xl > 1Yl
A= X +Y2iflxgl < 1yl
Aj=0 iflx;h = 1yl

26

A possible FORTRAN program follows:

FOoR <
€2 omaenn FORTRAN STATEMENT
Sevaaen , "
i3 DIMENSION X(10), ¥(10), Z(20)
5 READ L, X, Y, Z
6 SUM A =0.0
7 DO121=1, 10
8 IF (ABSF(X(1))- ABSE(Y(I))) 9, 12, 11
9 SUM A = SUM A +X(I) +Y()**2
10 GO TO 12
11 SUM A = SUM A +X(D**2 + Y(D)
12 CONTINUE
13 SUMZ=0.0
14 DO15]=1, 20
15 SUM Z = SUM Z +2())
16 PROD= SUM A * SUM Z
17 PUNCH I, SUM A, SUM Z, PROD
18 END

The DIMENSION statement sets aside storage locations for
the input data. The READ statement reads the input data from
cards into the 650. Statement 6 sets the quantity SUM A to zero.
Statements 8-12, under control of the DO (statement 7), compute

10 20
A . Statement 15 computes 2 Zi under the control of
i J

i=1 j=1

DO statement 14. The following statements compute and punch
PROD. Statement 12, CONTINUE, serves as a common reference
point; and since it is the last statement in the range of the DO,
after its completion I is increased and the next repetition begun.

4. In this last example a program is required to perform the
following operations: Multiply the L x N matrix bkj by the
M x L matrix a;; obtaining the product elements by the
relation

. bkj

0
I
nM™M-
o
[
=

ij =

Punch the elements as they are computed.

27

The problem may be represented in flow chart form as
follows:

READ READ - — 0 —SUM
A B —'M,N,L""J""—@_’"I_.@—' k=1 3

SUM= SUM+ Yes PUNCH Yes Yes
O %k Bij 0 SUM sTop

No No No
® D= @ (0= 0
c< "™ |:
comment! § FORTRAN STATEMENT

STATEMENT
nunsER

s v 12

C

RECTANGULAR MATRIX

C

MULTIPLICATION

DIMENSION A(4, 5), B(S, 3)

READ 1, A, B
&

READL, NN M, L

DO4]=1, N

DO41=1, M P

SUM= 0.0 Q

DO3K=1, L

SUM = SUM +A(L, K) * B(K,) —]R
—

PUNCH 1, SUM,],]

o | (W e ([O8 |= w2

END

28

The dimension statement reserves storage for the two
matrices, A and B, which in this example are 4 X 5 and 5 X 3,
respectively. For explanatory purposes only, three brackets
have been drawn around parts of the program to show the
sequence of statements controlled by each DO statement. The
brackets P, Q, and R correspond to the connectors() @) and®
in the flow chart. The first DO statement specifies that pro-
cedure P, i.e., the following statements down to statement 4, is
to be carried out for J = 1, then] = 2 and so on until J = N, The
first statement of procedure P (DO 4 1= 1, M) directs that pro-
cedure Q be done for I=1to 1= M. And of course each execu-
tion of procedure Q involves L executions of procedure
RforK=1, 2, ..., L.

Consider procedure Q. Each time its last statement is com-
pleted, the element c;; (called SUM) has been punched, the
"index" I of its controiling DO statement is increased by 1 and

29

control goes to the first statement of Q until finally its last
statement is reached with I = M. Since this is also the last
statement of P and P has not been completed until J = N, J will

be increased by 1 and control will then pass to the first state-
ment of P. This statement (DO 41 = 1, M) causes the repetition
of Q to begin again. Finally, the last statement of Q and P (state-
ment 4) will be reached with I = M and J = N, meaning both Q

and P have been repeated the required number of times. Control
will then go to the next statement, "END",

Each time R is executed a new term is added to a product
element. Each time Q is executed a new product element is
punched. Each time P is executed a product column has been
completed.

CHAPTER I I - INCORPORATING SUBROUTINES

Built-in
Subroutines

Adding Function
Subroutines

The ability to evaluate a function is not built into the IBM 650;

there is no operation code equivalent to Ve . If such a function be
included in a FOR TRANSIT statement a program must be available
to evaluate it. This program is referred to as a subroutine. Up
to ten such subroutines may be used in any one FOR TRANSIT pro-
gram. This chapter provides the necessary instructions and
relevant information for adapting subroutines and including them

in the system. ’

The FOR TRANSIT system has built into it a number of subroutines
for the most commonly used functions. Subroutines for floating
fixed point numbers and fixing floating point numbers, for handling
the various arithmetic operations, and for performing the input-
output operations are included in the Package Deck. These sub-
routines in the form of machine language instructions are loaded
into the 650 at the time of running the object program. A complete
list of the built-in subroutines will be found at the end of this
chapter. Although designed for the specific purposes indicated,

the built-in subroutines may be utilized by the programmer by pre-
paring an appropriate function title card.

Subroutines added to the system by the user for the purpose of eval-
uating functions will be integrated into the object program as follows:

1. The translator translates the function name found in the
FORTRAN program into corresponding IT notation. The IT
notation for built-in subroutines is supplied by the system.

2. The compiler generates the symbolic entry to the appropriate
subroutine using the IT notation supplied by the translator.

3. The assembler reserves sufficient storage space for the
subroutines.

The programmer must (1) specify the names of the functions
being used, (2) specify the IT call names which he wishes to have
associated with the function names and which will determine the
symbolic entries to the subroutines, and (3) include the subroutines
themselves, either in symbolic, i.e., SOAPII, form or in absolute
form. These requirements are considered individually in subse-
quent paragraphs.

30

31

Each function name which appears in a FOR TRANSIT source
program (see page 12 for general form and examples) must
be defined by a function title card when the source program
is processed. The function title card contains the

FOR TRANSIT language name of the function as it appears

in the source program, e.g., SQRTF, and the IT call name
to be associated with it in the compiling phase, e.g., 23EK.
A description of the card format for function title cards is
included in Chapter III. The function title cards are loaded
by the translator prior to the statement cards.

The IT call name which is punched in its corresponding
function title card is of the form nEK, where n is a one,
two, or three-digit number. The choice of subroutine
number n is arbitrary except that (a) none of the numbers
of the built-in subroutines may be used, (b) no number may
be used twice, and (c) n must be less than 500 if the output
is in floating point form and equal to or greater than 500 if
the output is in fixed point form.

Function subroutines may be included in the system in either
of the two forms indicated below.

a. A function subroutine in SOAP II symbolic form is always
incorporated into the object program by assembling the
symbolic instructions of the subroutine together with the
symbolic instructions produced by the compilation phase.

Symbolic addresses used in the subroutines must
conform to the following rules:

1. The entry point must correspond to the entry gener-
ated by the system. The entry generated from the
IT call name (nEK) will be of the form E0Oab where
ab is a pair of alphabetic characters derived from
the subroutine number by the following method: The
subroutine number is divided by 26; both the resulting
quotient and remainder are incremented by one, and
then each is transposed into its alphabetic equivalent
(1= A, 2= B, etc.) to form the pair. Thus sub-
routine number 5 translates into the pair AF, the
number 80 into the pair DC, and the number 571 into
the pair VZ.

2. The entry point must be the first card of the sub-
routine at assembly time.

Writing Function
Subroutines

3. The first character must not be the letter "L".

4. Symbolic addresses used by more than one subroutine
must begin with the letter "E".

b. A function subroutine in absolute form is in the standard
five instructions per card format, and is incorporated
into the object program at the assembly phase. A SYN
card in SOAP II format is required for the entry point of
the subroutine. For example, if the absolute location of
the entry point is 0500 and the location as generated by
the system is EOOAB the SYN card is as follows:

a8- -5ors|- 5556 ls‘r F&a— =Y 80

SYN EO0OAB 0500

The subroutines to be incorporated into a FOR TRANSIT program
must be written to conform to the format required by the system.

The system assumes the following entry and exit conditions for all
subroutines:

Let the subroutine be a function of "k variables in the order:

Vl’ Vos oo, Vk; where Vn is an expression, variable, or constant.
(n=1,2, ...,k

a. The entry conditions are as follows:

1. Vj is in the lower accumulator and the upper accumu-
lator is zero for FOR TRANSIT I and I(S), and for the
fixed mode of FOR TRANSIT II and II(S).

2. V; is in the upper accumulator and the lower accumu-
lator is zero for the floating mode of FOR TRANSIT II
and IK(S).

3. V,, is stored in POC0O0 +(k - n) when k >1.

4. The contents of the distributor are:
k=1 Exit instruction
k>1 00 POO0O +(k - 1) 0000 +m

Contents of "m" is the next instruction.
Contents of PO0O00 +(k - 1) is Vy.

32

5. If V, is itself a function of variables:
Wi Wo ooy Wy then

~ a. Wj is in the lower or upper accumulator as per rules
for Vy in 1. and 2. above.

b. W, is stored in PO00O +(k - n)

c. WJ- is stored in POO00 +(k - n+1 - j)

d. At entry the D address of the distributor is the
location of W2, and the I address is the location of
the next instruction.

e. The result of Vn is stored in POO00 +(k - n).
b. The exit conditions are as follows:

1. The result is in the lower accumulator and the upper
accumulator is zero for FOR TRANSIT I and I(S) and
when the mode of the subroutine is fixed for
FOR TRANSIT II and II(S).

2. The result is in the upper accumulator and the lower
accumulator is zero when the mode of the subroutine is
floating for FOR TRANSIT II and II(S).

The maximum number of arguments, VIl , is thirteen. These
arguments are evaluated from right to left. Each V_ can itself
be a function of variables, Wj . The argument V to the extreme
right can be a function of thirteen variables as there are 13
locations available at the time the first argument is evaluated.
The argument to its left, however, can be a function of not more -
than twelve variables as one of the thirteen available locations is
now taken by the argument that has been evaluated. In short, the
subroutine may have arguments Vj, VZ’ V3, “e ey Vk where
k £ 13, and each Vn can be a function of r variables where
r<n if k=13, r£ (n+13 - k) if k < 13.

A listing of the program for the following statement is included
in Appendix B to illustrate how the parameter, entry and exit are

handled by the system:

Y = OUTF (A, B, C, D, ENRF (E, F, G), H)

33

Use of Indexing The built-in subroutines include a routine to store and restore the

Registers : indexing registers. This routine may be used by incorporated
FOR TRANSITII routines as follows:
and IT (S)

1. Store the EXIT instruction of the incorporated routine in
"ERTHX".

2. Load distributor with the next instruction of the incorporated
routine and transfer control to "EZZZA". The contents of
the indexing registers will be stored and the instruction in
the distributor executed.

3. After executing the incorporated routine, transfer control
to EZZZB. The indexing registers will be restored and the
EXIT instruction in ERTHX executed.

The object program in FOR TRANSIT II and II(S) utilizes the
indexing registers when under the control of a DO statement.
Incorporated subroutines which use indexing registers and occur
within the range of a DO statement must preserve the current values
of the indexing registers.

Example of To incorporate the sample subroutine with the FORTRAN call name
Incorporated "DCAF'" and the IT compiler "28EK":
Subroutine

TRANSLATION PHASE: Prepare a Function Title Card (see page 40).
This card is loaded preceding the FORTRAN statements.

COMPILATION PHASE: Nothing required.

ASSEMBLY PHASE: The subroutine may be incorporated in sym-
bolic SOAP II format or absolute five instruction per card format,

1. To include the subroutine in symbolic SOAP II format the
entry point of the routine which is the first card of the
routine will be EOOBC.

2. To include the subroutine in absolute five instruction per
card format a SYN card is required for the entry point,
(SYN EOOBC nnnn).

Other Subroutines incorporated into the FOR TRANSIT I(S) or II(S)

Requirements systems in symbolic SOAP II format require a 12" punch in card
column 5 for correct read-in of the cards. Card columns 7-36 and
73-75 must be blank.

Absolute subroutines incorporated into a FOR TRANSIT program
are read in as load cards and require a "12" punch in card column 2.

34

List of Subroutines in Package Deck for FOR TRANSIT I

IT Symbolic
No. Purpose of Subroutine Entry
4 | (L) Floating Point« (L) Fixed Point E(}(%%Ei‘.
5| (L) and (ACC) Floating Point<«- (L) Fixed Point E(l)gé_g‘
6| (L) and (ACC)< (L) / (ACC) EQOAG
8| (L) and (ACC) (L) + (ACC) EQOAIL
9 | (L) and (ACC)«- (L) x (ACC) EQOA]
14 | (L) and (ACC) « (ACC) / (L) EQQAO
16 | READ E0QA
t91
17 | PUNCH EOOAR |
{707
501 | (L) Fixed Point«- (L) Floating Point E?g’gl;l
10| (L) and (ACC)4—(L) Fixed(ACC) Fixed EQOAK
11| (L) and (ACC)e—(L) Floating{ACC) Fixed EQOAL
302 | (L) and (ACC)4—(L) Floating(ACC) Floating EOQL:
1| (L)e~Log;q (L) EQOAB
2| (Lye10(L) EQOAC
{60
300 | (L)e~Lo EOOLO
(Ly#Log, (L) 0oL
301 | (L)yeell) | EQOLP
tgoo

NOTE: In the above listing, the second and third characters of the
symbolic entries are zeros, not alphabetic O's. The notation (L) refers
to the contents of the lower accumulator, and (ACC) to the contents of
the pseudo floating point accumulator which occupies drum storage
location 0000,

35

List of Subroutines in Package Deck for FOR TRANSIT Il

IT Symbolic
No. Purpose of Subroutine Entry
0 | Floating Arithmetic Device Overflow- EQOAA
Underflow checking and correcting routine
(see note 2 below).
4 | (U) Floating Point< (L) Fixed Point EOOAE
5 | (U) and (ACC) Floating Point <« (L) Fixed Point EOOAF
16 | READ E00AQ
17 | PUNCH EOOAR
501 | (L) Fixed Point<-(U) Floating Point EOOTH
10 | (L) and (ACC)*—(L) Fixed(ACC) Fixed E00AK
11 | (U) and (ACC)e—(U) Floating{ACC) Fixed EOOAL
302 | (U) and (ACC)#—(U) Floating{ACC) Floating EOOLQ
1 | (U)e—Log;((V) EOOAB
2 | wye—10¥ EO0AC
300 (U)Q—Loge (L) EOOLO
301 | (Uye—eV EQOLP

NOTE: 1. In the above listing, the second and third characters of the
symbolic entries are zeros, not alphabetic O's. The notation (L) refers
to the contents of the lower accumulator, (U) to the contents of the upper
accumulator, and (ACC) to the contents of the pseudo floating point
accumulator which occupies drum storage location 0000.

2. The compilation phase will generate an entry to Subroutine
EOOAA at the replacement symbol (=) of each Arithmetic Statement,
except when the Storage Entry Sign Switch is set to Minus (-). Sub-
routine EOOAA will stop the program if underflow or overflow has
occurred. Depressing Program Start will cause the program to
continue.

36

CHAPTERIII - PROCESSING THE SOURCE PROGRAM

Preparing the
Statement Cards

This chapter includes the necessary information and instructions
for processing a FOR TRANSIT program to obtain the object, or
machine language, program. The first sections of the chapter deal
with the preparation of statement cards and function title cards,
and subsequent sections constitute operator's instructions and notes
for each of the three phases of the FOR TRANSIT system.

Source programs stated in the FORTRAN language described
in the preceding chapter may be written on standard FORTRAN
coding sheets, IBM Form X28-7327. These are stocked at IBM
Stationery Stores in Endicott, New York, and may be ordered through
local sales representatives. The use of the coding forms is en-
couraged to avoid programming errors and to facilitate the transcrip-
tion of the FORTRAN statements to punched card form as described
in the following section.

FOR TRANSIT statements are punched in modified FORTRAN state-
ment cards using either a 24 or a 26 Card Punch Machine. Regular
FORTRAN cards, IBM electro number 888157, may be used. Two
different card formats are provided; the choice between formats

is dictated by the equipment specifications of the 650 to be used

for processing, as described in subsequent paragraphs. Regardless
of which format is used, each FORTRAN statement is punched on

a separate card using the standard FORTRAN code shown below.

STANDARD FORTRAN CODE

Char Punch 650|| Char Punch 650 |] Char Punch 650 ||Char Punch 650
1 1 91 A 12-1 61] 11-1 71 / 0-1 31
2 2 92 B 12-2 62 K 11-2 72 S 0-2 82

3 3 93 C 12-3 63 L 11-3 73 T 0-3 83

4 4 94 D 12-4 64 M 11-4 74 U 0-4 84

5 5 95 E 12-5 65 N 11-5 75 \'/ 0-5 85
6 6 96 F 12-6 66 0 11-6 76 w 0-6 86

7 7 97 G 12-7 67 P 11-7 77 X 0-7 87

8 8 98 H 12-8 68 Q 11-8 78 Y 0-8 88

9 9 99 1 12-9 69 R 11-9 79 yA 0-9 89
Blank 00 + 12 20 - 11 30 0 0 90
= 8-3 48 . 12-3-8| 18 - 4-8 49 , 0-3-8 38

) 12-4-8{ 19 * 11-4-8] 29 (0-4-8 39

NOTE: On the 24 and 26 Card Punch Machines equipped for special character punching,
the character X is the equivalent of the character) ; % is the equivalent of (; & is the
equivalent of +; and # is the equivalent of = . If desired, the 24 and 26 machines may be
modified on an RPQ basis (Request Price Quotation) to include the "FORTRAN key tops
and printing code plate.” This includes @ equivalent to " —".

37

If a statement is too long to fit in the statement field of a single
card, it may be continued over as many as nine additional
(continuation) cards. The maximum statement length is 125 char-
acters, exclusive of blank spaces. As blanks in the statement field
are ignored by the translator, the programmer may use them freely
to improve the readability of the source program listing. In any
continuation cards, column 6 must not contain a zero or be left
blank; it is used to number the continuation cards from 1 to 9. Other
details of the card formats are as follows:

Card Format for FOR TRANSIT I and II

FOR TRANSIT I and 1I, both of which run on the basic 650 without

a special character device, require the statement card format shown
in Figure 2. The statement itself is punched in a twenty column
field, columns 7 to 26. Numerical, alphabetic, and special char-
acters and blanks may all be included in the FORTRAN statement.
The FOR TRANSIT system will read and accept all of the punches
without the aid of a special character device.

//;'hw"

stavement FORTRAN STATEMENT ENTIfiCATION
wouszr

ﬂﬂﬂiﬂiﬂﬂ D0000900000000008[00000000#08[0800000000000000J00000000000000000000j00000000
22 asfefrasnnunusnnnenn NI Nn RN NsM N B8 COUBRTERNSHUNBH I ANUICOUBRTARR NN U AT .
i IR RN N R R R IR RN R R R R R I R R R AR AR AR R AR RRR
! STATEMENT NOT COMMENTS DIGIT 9'S
2012222(2122222222222222222222)2222222222122222222222222 2 §222222222222222222122(222222122
VAILABLE|(NOT PROCESSED)
3333333333323333333333333233233(3333333333333333(33323333333333333933)3333323233

CoRTuATT

>

R EE

4!44‘ SAAAA40 044400400440 044 40040404 4044404044044440 444444804400 440000084060044541

{iiil
LIBRR
4!!!!

29998
L)

e

BECCEEESERGBOEEEOECHEIEEP6866H{0666666666666B65H6686666666666668666086666666
1IN I IR T AN I II NN I A NI NN AN AT NNNIATINNTINATINNLY

1
2
3
4
1555 55555555555558555558555555555555]55556555555555653/55555565555555555555(38555555
6
7
1
s

Lt d—————————

NDHSHIHNNBNCOUBNOER NI NS SIANN

99590999059969990999(99999999999909998099999999

P AR N IR ZANSI BT ARANI RN UBBIT R RGN QOSBRI UNE N

Figure 2

Card columns Description

1 An alphabetic C (or any non-zexro punch) in
this column indicates a comments card,
which will be ignored during translation. A
zero indicates a statement to be translated.
This column must have a punch in it.

2-95 Statement number. This field must contain
numerical punches.

38

Card columns Description

6 Used to indicate continuation cards. A zero
indicates first card of a statement regard-
less of whether the statement uses one or
more cards. A non-zero punch from 1-9
indicates a continuation card. This field
must contain a numerical punch.

7-26 The statement. Numerical, alphabetic and
special characters and blank columns are
all acceptable in this field,

27-36 Not available (blanks).

37-52 Not read by FOR TRANSIT. May be used
for comments.

53-72 A digit 9 must be punched in each of the 20
columns.

73-80 Identification. Not read by FOR TRANSIT.

Card Format for FOR TRANSIT I (S) and II (S)

Those installations in which the 650 is equipped with a special
character device will utilize FOR TRANSIT I (S) or II (S), and the
statement card format applicable to these systems is shown in

Figure 3. It will be noted that this format is quite similar to the
preceding format except that the statement field includes ten additional
card columns and columns 37 through 80 must be blank.

FORTRAN STATEMENT JOENTIFICATIOW

nuuBER

nnounﬁonnnnunnooonunonunnnounnnunnao‘Enoounooounounnauunnnonnonucaonnnonuunoanun
5
1 1

23 s

thin
3

TEIWHRZOUBRTNHBIND NS BN 2 DA X

IRRR R R RN RN RRR AR RN

I AN RN HGEE TR RIHSANABNAROMGRTUSIN I NEN TR ®
LARRR R R R R R R AR A RR RN RN R RRREN!

STATEMENT

22222(22222222222222222222222222222202222122222222222222222222222222222222§22222222
MUST

3133]1333333“333133133313333333333331333333“13MUST BE BLANK3333333!33333383E3333

I
l’«Nll44“44444!444!444444444444444!4‘444‘4!444‘ll444444444‘44444‘44“444‘44!‘44!
BLANK
55555/5/555555555555555555555555555555(55
&

i:“ii

G EEE6666666666666666666666666/6666666666666666666666666666E6666566/66666666
ER R R N R RN R AR SRR R R R R R R R RN R R R R SRR RRRRI I RERR DD

I'lllllll!
9199993983
L1]

Hzaes

3
89999999999999999999999999(9999999899999599999999909999999999989(99959999

LR DENEEE-EEELFEEL HEEPES L Rt e g e e e I O T T P R S 8)

Figure 3

39

Preparing the
Function Title

Cards

Card columns

Description

2-5

7-36

37-72

73-80

An alphabetic C in this column
indicates a comments card, which
will be ignored during translation.
This field may be left blank.

Statement number. This field may
be left blank.

Used to indicate continuation cards.
Zero or blank indicates first card
of a statement. A non-zero punch
indicates a continuation card.

This field may be left blank.

The statement. Numerical, alphabetic
and special characters and blank
columns are all acceptable in this field.

This field MUST BE LEFT BLANK.

MUST BE BLANK. Normally used
for identification but reserved for
zone punches.

Sample Problem Statement Cards

the preceding chapter.

Figure 4.

A machine listing of the statement cards for the matrix multipli-
cation example discussed in Chapter I is included in Appendix B.

Title cards for function subroutines are required in the translating
phase to create an internal table of function names as described in
The format of these title cards is shown in

000001 5 J
BsTanDARDE|FOR TRANSIT T
TRANSFER | FUNCTION CALL

INSTRUCTION [TITLE
T L] | ORI

EERRIORNE 3
(RN RRRY LRRIRARRRRRRE
22222222122
333333330

4483004004

222222222
333333333
444040444
5555555558 55555555)
66666666566 G66656666

IRRRRRRRRRIREERERREE

11213 13 % 17 W e

TITLE
NAME

RERERERERINIIRERE
2222122222220222212
333333333M333333 3
AKX EER N L R IRENY
5555555555/585555§
GG 66666666/660666G8 6
IRERRRRERE N INRRE

99989999399/993599899

T3 as e TR yhizIMIS BN

poasscsosejosonnsoenneg

JEEEECEEEE CECEEER EREL DL

MmN
222212
313333
44444
§5555
66665
111

CALL
NAME

0000 0f
SR L
1111
22121
33313
LXRRE
55555
666686

17117

npnMsn AN AN K)Y

Clll]:llll
PP N

scessdonacaRRcRRRRRORRERIRRIRRIOY
MANHRUHUANBVUNONTRURSINERIZNNANNIANE
(AR R R R R AR R R AR R ARR RN
2222222222222212222222222222022222
33333333333333333233333323333233203
Q440444444400 00004404000
5555555555555 559553555855955655555
6666666566666 66GEF068RBCEGR66666
TIITRNIRRT20T00000 00100000000
R N R R R R PR N RN R RN RN RN]]
99999999599959999953999999999399989

MR N USSR YANESI QR NUSEU BRI RINBRTIAN®

Figure 4

Card columns Description

1-10 A standard instruction, 00 0000 1500,
which is required in all function title
cards. Columns 2 and 10 must each
contain a 12-punch.

11-20 The FOR TRANSIT function name
(title) in 650 double digit representa-
tion. A name consisting of less than
five characters (ten digits) must be
punched in the low order positions of
the field. wsed high or i

> lof the Tield must be punched 00> A
12-punch is required in column 20,

21-30 The IT call name in 650 double digit
representation. If a name consists of
less than five characters (ten digits)
by virtue of its having a subroutine
number < 100, it must be left-
justified in the field.

___9 order positions must be punched 00
' A 12-punch is required in column 30.

31-32 Blank columns.

33-37 The FOR TRANSIT function title in
single character representation. This
field is for identification purposes only.

38-42 Blank columns.
43-47 The IT call name in single character
representation. This field is for

identification purposes only.

48-80 Blank columns.

A completed function title card is shown in Figure 5. In this
sample card the function specified is the square root (SQRTF), and
the subroutine to compute the function has been assigned the number 23.
This card will cause the entry EOOAX to be generated by the compiler;
the appropriate subroutine must be incorporated at the SOAP level
with the symbolic output of the compiler (see Chapter II).

41

Operating
Instructions

Phase I

/BON00N1SNOB2 747382364 29365?20ﬁ [SORT 23EK
ISTANDARD TRANSIT T

INSTRUCTION TITLE NAME
||||||M| 0oo600B00000000000]

TIASE I IMNROMNNDRNNIRIZONDIT ANN l,113’!!!11!'“‘!““.‘0}..’!!Hu!“l“’l.“uﬂ“u‘l!.ﬁl"TIVI)"II"1l1|.
Illlllllflllllll|lllll1ll|llllll

21222122222 222222222 222222222
31313133333333131'11333'13133333333'1333333.3113311!1!3!11313333]13333131]]3]333
AR et et a0 4304400
5555555.55555555555555555'555555555555555555.55555555555555555555555555555555555
ﬁﬁSSBSSESGBBSBESBE.J
177717171177'1'71177771711.11177111717771171171717177777171)!7111777171177771117
BB!ll!ICllllll&!llll!l!l!lll!ﬂllﬂlllﬂlll!llI!lIlllllBl!llGilllllIBIBSBSUIIIIBIIB
!995999999!9959!599! 9 SSESﬂBJ L

1

1
TRANSFER | FUNCTION CALL TﬂLE CA '1
NA

|on|uunloqnounnnunnnunnualooulounnnunnnuuuaounna

IRRRRIRRARI RN RRERR R R AR R AR RN RN R AR RN ARRRE|

|221222122.12.1221211122122122222222222222222221

6666[66666/66]6666 66666(66666/6666666666666656666666G6666666666

999|199 983[99599[9599%9

halnuS s ueneu dovs e

99!399939!!95!999“5998993!!99953

Jaser e smliERNAE TP T R I ST A R R AR E T

1nwen HEBTBI

Figure 5

NOTE: Function title cards must be in numerical order with
respect to the information punched in columns 11-20 of the cards
when they are loaded in the translation phase; i.e., they must be
in alphabetic order.

Phase I (Translation)

42

Console Settings

Storage Entry: 70 1952 9999 (If FOR TRANSIT and function title
cards are already loaded, 00 0000 1999)

Switches: Programmed STOP
Half Cycle RUN
Control RUN
Display UPPER
Overflow SENSE
Error STOP
Operation

1. Ready machine with proper console settings, FOR TRANSIT
(533) control panel and blank cards in the punch hopper.
I¢
2. Ready read hopper with:

—a. FOR TRANSIT deck
b. Title cards (in numerical order on cols. 11-20) for any
function subroutines required by the program
c¢c. FORTRAN statement cards

3. Depress computer reset key; program start key; and, when
read hopper empties, end-of-file key.

e

43

The 650 will load the FOR TRANSIT deck and any function
title cards and will automatically start reading the FORTRAN
statement cards. Translation will take place on a statement by
statement basis, with the corresponding IT statements being
punched concurrently. The last FORTRAN statement to be trans-
lated should be a "END". Immediately after this has been pro-
cessed the machine will punch a Header Card needed for the IT
compilation step. - -

4. At the conclusion of the translation process, run cards out
of the punch feed and discard the first and last cards. The
remaining cards, in order, are (a) the IT statements, and
(b) the IT Header Card.

5. Rearrange the card order to (a) the IT Header Card, (b) the
IT statements. This is now the complete IT program and is

ready for compiling.

Translating More Than One Program at a Time

It is not necessary to reload the FOR TRANSIT deck to trans-
late additional source programs. Simply stack the statement
card decks for the several source programs one after the other
in the read feed as if they were all one program. The last state-
ment of each program, i.e., the concluding "END" statement
will cause the 650 to:

a. Punch the Header Card
b. Initialize and proceed with the translation of the next pro-
gram in the read hopper.

This procedure assumes, of course, that appropriate function
title cards are included (immediately after the FOR TRANSIT
deck) to create an internal table of function titles containing all
the functions which will be encountered in the several source
programs.

To create a new table of function titles requires the loading
of the FOR TRANSIT deck followed by the new function title

cards.

Programmed Stops

The machine is programmed to stop under certain conditions
during the translation phase. If a stop is encountered, display

the contents of the program register and compare the data address
with the following list to determine the reason for the stop.

44

Data Address

0001

0002

0003
0004

0005

0006
0007

0010

0020

0030

0040

0100

0300

Reason for Stop

‘ i
Unacceptab&e or misspelled norl-arithmetic
statement.

Table overflow, i.e., the limit on the
number of variables (either subscripted or
non-subscripted), or on the number of
branches in computed GO TO statements
has been exceeded.

Statement with more than 125 characters.
A variable contains more than 5 characters.

The scan routine, which inserts additional
pairs of parentheses to satisfy the require-
ments of the compiler, is attempting to
exceed the limit of 15 pairs. (Though not a
programmer's error, the statement must be
rewritten as two statements and reprocessed.)

More than ten function title cards.
Function title cards not in ascending order.

The statement does not contain an even
number of parentheses.

An unacceptable combination of punches in
a card column.

An unacceptable function name, i.e., one
not defined by a function title card.

The variable has been omitted from a
control statement.

More than 5 characters in the constant
or variable component of a subscript.

Translation results in a statement of more
than 120 characters in length. (This is not
a programmer's error, but is caused by the
expansion from FORTRAN to IT. It never-
theless must be corrected by breaking up
the offending statement into two statements
in order to avoid compilation error.)

Operating
Instructions

Phase 11

Data Address Reason for Stop

0400 Improper DIMENSION statement.

Error Procedure
Ay

When an error is indicated, remove the cards from the read
hopper and stacker and run out the cards still in the read unit.
The first card out (or the fifth card from the back) will be the
one containing the error. If the error card is a continuation
card, the error is in the corresponding statement but not nec-
essarily in that portion of the statement contained on this card.
If corrections can be made at once, do so and reload the read
hopper with the corrected card and all of the cards which follow
it in the program and press the program start key. Translation
will be resumed. If it is not possible to correct the error
immediately, relinquish the 650 and completely reprocess at

a later time. It is important to remember that an error
indication appears at the time that the error is being processed
for translation. Under certain circumstances, therefore, part
of the statement containing the error may have been translated
and punched out before the error was encountered (for example,
in a lengthy arithmetic statement or in a PUNCH statement
containing a series of variables). In such a case it is necessary
to remove the erroneously punched cards from the punch stacker
before restarting the program.

Phase II (Compilation)

As mentioned previously, the IT compiler has been modified for
the purposes of the FOR TRANSIT system. Standard IT decks should
not be used in conjunction with the FOR TRANSIT system.

45

Console Settings

Storage Entry: 70 1952 9999 (If IT is already loaded,
00 0000 1999)

Switches: Same as for Phase |
Operation

1. Ready machine with proper console settings, FOR TRANSIT
533 control panel and blank cards in the punch hopper.

46

Ready read hopper with:

--a, IT deck

b. IT Header Card
c. the IT statements

Depress computer reset key; program start key; and, when
read hopper empties, end-of-file key.

The 650 will load the IT deck and begin reading the IT state-
ments. Punching will occur as each statement is compiled
and ready for output.

At conclusion of compilation, run the cards out of the punch
feed, removing the first and last cards. The remaining
cards are one reservation card for data requirements and
the compiled symbolic program. The program is in one-
instruction-per-card SOAP II format, with the IT statements
in the remarks field. The deck is now ready for assembly.

Compiling More than One Program at a Time

It is not necessary to reload the IT deck to compile additional
programs. Simply stack the statement card decks for the
several problems, preceded by their respective Header Card,
one after the other in the read feed as if they were all one pro-
gram. The last statement of each program, i.e., the trans-
lated "END'" statement, will cause the 650 to:

a. punch the problem constant table

b. initialize and proceed with the compilation of the next pro-
gram in the stack.

Programmed Stops

The address lights will show 1234 for error stops. The four

high order positions of the display lights (Upper) will specify the

statement number of the offending statement; the next position
will be zero; and the five low order positions will indicate the
type of error according to the following code.

Code Reason for Stop

01001 The number of instructions compiled from a single
statement exceeds 93 instructions.

Operating
Instructions

PhaseIll

Code

03 0 03
620 73
62 0 99
650 99
67 0 99
69 0 73
69 0 99
88 0 73
88 0 99

50 0 50

xx 0 xx

Reason for Stop

Power of floating point constant exceeds 50 or is
less than 00. (00 > PP > 99)

Nest of DO loops exceeding 4.
Floating point exponent of a constant.

Subroutine entry exceeds limit.
Unconditional transfer exceeds limit.
Subscripted fixed point variable in error.

Non-subscripted fixed point variable in error.

~ Subscripted floating point variable in error.

Non-subscripted floating point variable in error.

First character of arithmetic statement or the
"DO" statement index is not alphabetic.

Errors not specified above will indicate an improper

formation of an arithmetic statement.

Error Procedure

When an error occurs during compilation, note the reason for
making corrections to the original FORTRAN statements.
Depressing the program start key will cause the 650 to read
the next statement and continue. Further output of the state-
ment in error will not be punched.

Phase III (Assembly)

As indicated previously, the SOAP II program has been modified for

the FOR TRANSIT system. .Standard SOAP II decks should not be
used in conjunction with the FOR TRANSIT system.

47

Console Settings

Storage Entry: 70 1952 9999

Switches:

Same as for Phase I

Operation

1.

O AD DD

Ready machine with proper console settings, FOR TRANSIT
533 control panel and blank cards in the punch hopper.

Ready Read Hopper with:

SOAP-PACKAGE Deck —

Subroutines in five-per-card absolute format, if any

Entry point "SYN'" cards for subroutines in 650 language

Data reservation card (first card of Phase II output)

Subroutines in symbolic SOAP II format, if any

. Compiler output in symbolic SOAP II format except
first card

g. One blank card if it is desired to punch out the avail-

ability table after assembly. (Availability table can

also be obtained by manually transferring control to

location 1900)

. Set the storage entry sign switch to plus for condensed

five-per-card output format, or to minus for standard
SOAP II format.

Press computer reset, program start, and, when the read
hopper empties, end-of-file.

Run cards out of the punch feed. Discard the first and last
cards. With the storage entry sign switch set plus for five-
per-card format the remaining cards are:

five-per-card load routine

package subroutines

subroutines entered in five-per-card format

subroutines entered in SOAP II format

compiler output (object program)
o

U W N -

48

All of the above cards are in the standard five-per-card
format. The last card when loaded will also transfer control
to location 1999, which is the first location of the object pro-

gram.

With the storage entry sign switch set to minus, the re-
maining cards are:

1. five-per-card load routine
2. package subroutines
3. subroutines entered in five-per-card format

49

4. one card which modifies the load routine to load single
card instructions

All of the above cards are in the standard five-per-card
format. The remaining cards are in assembled single card
SOAPII format.

data reservation card

entry point "SYN" cards for subroutines in 650 language

. subroutines entered in SOAP II format

compiler output (object program) assembled in single card
SOAP II

9. a transfer card which when loaded will transfer control to

[+ B B = W)

location 1999 which is the first location of the object program

Assembling More Than One Program at a Time

Assembly of additional programs requires reloading the
SOAP-PACKAGE deck preceding the subroutines and compiler
output, since the five-per-card load routine and package sub-
routines are interspersed throughout the deck and are punched
out while the program is loaded. Thus the output from the
assembly phase is a complete object program.

Multifile processing can be simulated by inserting a SOAP-
PACKAGE deck between each problem to be assembled. The
system is such that after processing the last compiled instruc-
tion the program transfers control to the console which will
load the SOAP-PACKAGE again.

Programmed Stops

The address lights on the console indicate the error condition
listed below:

Code Reason for Stop

0111 Symbol table full.

0222 Drum packed.

0333 Nllegal SOAP II card has been encountered.

Depress Program Start to continue assembly.

Error Procedure

Error stops 0111 and 0222 are encountered when the capacity

of the assembly routine or the drum has been exceeded and
assembly is halted.

Error stop 0333 will in the case of single card assembled
output reproduce the error card as an input card, and in the
case of five-per-card output insert blanks in the instruction
and its respective address and the card will not be punched as
a load card. Thus, the output cards can be corrected using
storage available as indicated from the Availability Table.

‘IIf @seyd o3 mdug se aMoys 1epio atp aAlb o3 JEWIOY [JVOS OF[oquuAs pue 2INJOSqE UI SIUFMONNS 25U °§
“(S) II 3 11 .LISNVY.L YOJ Tl MOTHIPAC J0 MO[4oPEn 10§ ooy ureboxd 309{qo yo wopenduwod 23eurIf? 03 SNUT 03 398 YOIMS ubrs Anug abewis g
*syuswajeys burpasasd sepeol PiM burmredy] °7

,b.*-

wesboxd 303(qo ur uaw
-23e3s yound 4q o7 payse sy

F

wresboxd 102(qo (p
ssupmoaqng (>
ssupnoIqng a6eqoed (q
aupnor peoj (e

(e)
jeuwio} [1 JVOS T
wreiboxd papdwo) (q
pIed
uopEArasaz eye(g (e

(1)
wspeay I (q
smrouratels JJ (e

dxe

spreo Bupneuray pred isey

PUE ISIy PIEDSIP PU® pasy

gound jo o spieo unx ‘aseyy
Yoed Jo TOTSNIOUod 3 3y °§

wesboxd 109(qo Jo Hurumy

Apqurassy

Jav¥s) 2 -

(2
"oprerrdmo)

zopefsael],

TEATTel g ok

amed &3

Ao smig-yo-pug (o

Aa¥ 1re3s wrexboig (q

Aay{ 39521 samdwra)) (e
Y ¥

Aue j1 ‘spreo e3eq (q
spred
se] pue jsny Burpredssip
111 @seyq woxg mdmo (e

Jeunog I1 JVOS

ur ndno wrdwo) (3
JBWIO)

II dVOS ur seupnoxqng (2
11 aseyq woy

pIed noreArasal eie(g (p
sournoIqns
abenbuet 059 10f

spres NXS wrod Anuy (o
abenbuey

059 wt seupnomns (q

§oap sbexord-gvos (e

sjuawalels I (o
1peaH 11 (q
193@ 1 (=

spIeo
JmaWAIEIs NVH.LYOA(P

Aue y1‘spres emany uonouny(q
Moep LISNV UL, dOd(e

M weddoy pear Apeay ‘¢

S{uerd

S{ueTd

S{ueTd

s

P roddoy yound Apeay g

pIeoq 1s3joeIeyd
reoads LISNVY.L 4Od
preoq I1I 3

1 3seyd LISNVHL HO4

preoq u@uo.mhwn_.d
reroads LISNVY.L Yod
pIeoq II1 3

II @seqd LISNVY.L 4Od

munOQ H&HO.WHW.&U
Teoads LISNVY.L YOd
pxeoq II1 3

I1 @seyd LISNVU.L 4Od

pIeoq Ia30ereyo
Teoads LISNVYLL ¥O4

preoq [asey] LISNVYL YOd

(s) 11 3 (8) I LISNVYL ¥od
I 31 JISNVUL ¥Oi
Io} ggg Ul [oued Jonuod asuy ‘|

TNLL WVYOO0Ud 1OI(F0 III ISVHA IT 4SVHd 13SVHd NOLLVYIdO
“SaUOHMS UOHOI[aS Ny onmo)
$S2IpPY Jo sueswt Aq 6661 WOIIEDO[O} [OXUOD IIFSTEL IO 6661 0000 00 03 SIYOIMS dOLS JoLry NI 314D JTeH
Anpry 263035 395 ‘papeo] Apeaare are spieo aTin wontouny pue wesboxd msseocoxd J FSNEAS MOTIIRAD doLs pourtreabory
Hdddn Aerdsid 6666 2561 0L $AWPIMS Anuwy aberos

ANATD0Ud ONLLVIHJO 40 AYVINNNS

SONILLIIS TTOSNOD

51

CHAPTER 1¥ -

Preparing
Data Cards

USING THE OBJECT PROGRAM

This chapter contains the information and instructions necessary
for utilizing an object program produced by the FOR TRANSIT
system. The first section deals with the preparation of data cards,
and the second section consists of operator's instructions and notes
for running the object program.

As indicated in Chapter I, a READ or PUNCH statement in the
source program will cause the object program to read or punch
data cards, card after card, until the complete List has been
processed. This reading and punching of data is actually accom-
plished by subroutines contained in the Package Subroutines which
are always loaded with the object programs.

Data Cards

Data cards are identified by a "12" punch over card column 73. One
to seven pieces of data may be included in one card. If the List
requires more than one card, i.e., more than seven pieces of data,
additional cards are read or punched.

Data is located in the first seven fields of the card, each field
ten columns, with negative values indicated by an "11" punch over
the units position of the respective field and positive values by a
12" punch or a blank over the units position.

Word eight of input cards is available for identification as
desired by the programmer. Word eight of output cards is punched
with the statement number in the I-address, and with a serial
number (which is sequential for each problem) in the D-address.

Data is read and punched in the order specified by the LIST
from left to right, with arrays in columnwise sequence.

Form of Data

Data representing values of floating point variables are punched in
data cards as floating point numbers of the form .XXXXXXXXPP,
where PP is the power of 10 with 50 added to avoid negative exponents.
The values assigned to fixed point variables must be integers, and
any unused (high order) positions of a field must be punched with
Zeros.

52

Executing the
Object Program

Operating Instructions

53

Console Settings

Storage Entry: 70 1952 9999 (If object program already
loaded 00 0000 1999)

Switches: Same as for FOR TRANSIT (Phase I)

Operation

1. Ready machine with proper console settings, FOR TRANSIT
533 control panel, and blank cards in the punch hopper.

2. [Set Storage entry sign switch to minus for executionl and to
plus for bypassing of conditional Punch Statements.

3. Ready read hopper with entire output of the assembly phase,
and data cards if required by the program.

4. Depress computer reset; program start; and when read
hopper empties, end-of-file.

The object program will load; control is then transferred
to location 1999 which is the first instruction of every object
program. Under control of the object program,data cards will
be read in and punched out.

Running More Than One Program at a Time

Running more than one object program at a time can be accom-
plished by stacking the object programs and their respective
input data cards in the read hopper. After completing a program
the 650 will return control to the console which being set to

70 1952 9999, will load the next object program.

Programmed Stops

PAUSE or STOP statements in the source program will give rise
to stop codes in the object program. The data address of the
stop instruction in the display lights is available to determine
at what point in the program the stop occurred.

Source programs which attempt to transfer control to state-
ment number zero will give rise to an error stop which displays
the address 9888 in the display lights. In FOR TRANSIT I (S)
and II (S) the number zero is assigned to blank statement num-

bers, and this number should not be used.

In addition to compiled stops in the object program, certain
stops will occur in the package subroutines. The address
lights on the console indicate the type of error according to the
following lists:

PROGRAMMED STOPS IN PACKAGE DECK FOR FOR TRANSIT I

Package Sub-
routines in Which
Address Lights Error Condition Error Can Occur
0001 Negative argument EOOAB, EOOLO
0020 Zero argument with EOOAK, EOOAL
negative exponent
0050 Floating point result EOOAL, EOOLP
less than 107! or EO00AC, EO00AG
greater than 1049 EO0AI, EO0A]
EOOAO
0501 Floating point number EOOTH
to be fixed greater
than 1010

Erxrror Procedure

The various error conditions listed above may result from such
causes as logical errors or scaling problems inherent in the
source program, errors in preparing data cards, etc.
Depressing the program start key will cause the 650 to perform
the instruction contained in the distributor, which will be the
subroutine Exit instruction. This instruction should be noted
as an aid in locating that point in the object program where the
error occurred.

PROGRAMMED STOPS IN PACKAGE DECK FOR FOR TRANSIT 1I

Package Sub-

routines in Which

Address Lights Error Condition Error Can Occur
0001 Negative or Zero Argument EOOAB, EOOLO
0002 Floating Point result EOOAC, EOOLP

>10%

Package Sub-
routines in Which

Address Lights Error Condition Error Can Occur

0003 Error - Floating Point EOOLQ
Exponentiation

0010 Fixed Point argument of EOOAK
zero with negative exponent

0011 Floating Point argument of EOOAL
zero with negative exponent

0049 Floating Point result EOOAL
21049

0100 Floating point overflow or EOOAA
underflow in an arithmetic
statement

0501 Floating Point number to be EOOTH

55

fixed 2 1010

Error Procedure

The various error conditions listed above may result from
such causes as logical errors or scaling problems inherent in
the source program, errors in preparing data cards, etc.
Depressing the program start key will cause the 650 to perform
the instruction contained in the distributor, which will be the
subroutine Exit instruction. The instruction in the distributor
should be noted as an aid in finding the point in the object pro-
gram where the error was encountered.

APPENDIXES

Appendix A

Appendix B

Appendix C

57

533 Control Panel Wiring Diagrams for FOR TRANSIT I
and FOR TRANSIT II:

FOR TRANSIT (Phase 1)
IT - SOAP (Phases 2 and 3)

533 Control Panel Wiring Diagram for FOR TRANSIT I(S)
and FOR TRANSIT II(S) (all phases).

Listings of Cards for Each Phase of Processing of Sample
Problem 4 (Matrix Multiplication).

Listings of Cards to Illustrate a Function of Multiple
Arguments of which One Argument Is Itself a Function of
Multiple Arguments.

Glossary.

APPENDIX A

¥ 9 I3 ® O 6 B IS 9 O M T I} 6 OC & B > W Sr vy D 2 B O 66 K i K S M ® O 08 €2 R 2 W R ¥ €@ W 1k OF & M 4w B W G oK & 8 ¢ 9 & s & T

¥SN NI QAINING
w o © o ¢gfjoo o o o o O w| 0 © 0 0 0 0 0 O O O Ld
| £ 0JiN00 130 90— T][O ouren 130
o o o o oJoo o o o o o ool 0 0 © o o o -
} 00 —msam 13 JHRUO AMINT 130 0 s ff e [0 X3 .u..oz.»zu..uoo. "
-~ o o o ofofJo o o o o o© L o © o 06 o0 © o o oflo-o-03b-cfoo=o0=0=0 -~
| 06 s Ju 1] 130 28 9 00 comm——j] o O i LULNT 130 08 - 4 — T o 1 jnemi] avau 0]
-] o o ololo o o o o o w] o o o o 0o o 0o o o offo=o — ogo=0fo bl
“of1n00 130 98 % — WNLNOD 130 I8
- o o o ofjolo o o 0o o o mi 0 0O 0O 0 0 0O O 0 0 © -
' Foo 143 4uo auin3 130 56 Womnl fn O et 1 .n 43 S >E.a .—S E)
t ° o o oJoJo o o o o o w[o o o 0o 9.0 hd
! WINT 130 90 © 40 cmmm—G cma P O st A E..u Q20 %4 s a0 . ¥
hd & o o olofo o o o o o |w| o © o o @ o o o u - -
n earn | ODINOD 130 98 i 1§ — e O e WY ANGD LD o. QVIN LSUIS D1IWVHJ Ty emam
oo oJo]o o o o o o v © ¢ 0 0 o © o © o @
por 10§3 JYMC ABINT 130 28 o —0f :xu L S E»xu :8 90 st
- o o oJo o o o o o L c o o o o o
wing 130 28 @ 99 TE ey IOnI:»:u Zc o- -2_ 3
b 6 o oJfofo © o © o o {wf © o o o o o o o (M @
OfuN0D 130 20 T3 — § bun ul
o o ojffo]Jo o o o o o # o 0o o o o o
} 02 =mtmsmes JIR3 JORNO AHINI 130 DU memmemvites § iy — X3 49 s >x;u FUQ]
o a oAqlojo o o o o ©° » o o o o % »
wiN] 130 08 9 40 W N3 _.ua u- 08
o offo]o o o 0o 0o ¢ |w[] 6 © ©¢ 0 0 o o o o o o o
[o o ™
o oo © o o o o %] ¢ o o o 0o 0o 6 0o o © >
% o5 3 w 2t 1" ot [
° oflo o 0 o o o [wl o o o o o 0o 0 o o bl
335 - T [ot " 38 - —
o] O ofo o o o o0 o o o o0 6 O o o o © © o B 0o o ©0 0 © i hd
oL [wj s nea w o o 3
offo © 0 o © 0 O N 1 o o o o © o ° z
oc » wis NOWNOD inoff ¢ (] 6 N w
o [} o o 0o © 0 © . o o © o o o o offo o o © ¢ © o o o o 4
ot &0 o s Tl vy ® .3 23
© o o °0 © o 0o o 0 © " o o
ﬁ w NNAI0D OV d . ._u,_um 3000 av. 1% Quvd av ' J
. 0=0~=0goO=0 O=—nft=0 o0=0 o=o off ¢ =
~M_ 1508 1161 1 g1 101 .u. 12T a2
B . —gubing o omomofo-0 O0=—.}l—0 0= 0=0 0=0 off o § e—w e > *
L] } ‘. S v m 5o OvIveml (RSN F§INIW OVIU :_ W 1* 11 2 v
" + @it § O , Gt G " >— &8 Gt b OB ° - — "
193136 - 07 +9T .n— 1PT gy 21 ..: 0T 6 ¥ U W 9 » K 2 HHoK O Vit
' o 06 o cJo o o oflo olo oapolo o o o o offos Sl o—e o—o o—-a o—a oNolofo o o o o ofjo o ©o 0o 0 0 6 0 0 0 O O
oe 13 nin a0 304 N0I23 b o (78 o L »
s © o o o o o okg © o o o o o ofe =ofol \clxmwhr & o—e +—e oo b offe o o o o oflo o 0 0 0o 0o 0o 0 0 © O O
o’ 5% m oS 2 14 L k. Bl ST Wi KT 21 9T 0T 6 B M 1B 5 W K 12] L *® o% L »
» o o o o o [+ o [+] Q =] o o o o] P o [o G L e d > o o o [+ (s} o o =] o (=) < Q © Q -] Q o o o o .
or 13 ot <2 ” 2 4NWOId ¥O01I37VF5 - 02 dNN0Id HO12373S - 0O T w 2 gor L 3 o 3 n
° © © ¢ o o 0o 86 6 0 0 0 0 0 0 © O o o o ofo et Crmp o—t 3O -t S8 &= =@ O ofo 06 o 06 o o olo o ¢ o 06 0o 0 0 0 0 0 O O °
Quv) WO _ W2 1 BF KT 9T ST apT ET 2T ar T8 B L B K W K T - 9 owvd av. .
° ©o3jc O 0 O O O © O © 0)OFO © 0 © O © 0 0 © Ofe—a o=t &—a b &0 ° oo @o—o o—w o—s o—o0foFo 0 o 0o o o © o0JOo 0g0}0 0 0 0 0 O O O O O .
oNOM 6 ONOm Q0K HOL2373S 1O 0N ¥01I3713S A0
. ©§Jo 0 o o o 0o o o © oflogo 0o 0 o © © © 0 o COfoO O O O O O O O 0J%0 « 5 ¢ ¢ 0 0 0 © o0 odoH3o © O O O O o ofofo o o o 0o o 0 o © O .
o ouom L QuoM L au
- 00 0 0 0 0 0 @ o © oJeFe © © © 0 o o o o Offo o o O O O © ONO " o o 2 0 0 © onNollozo © 0o o o o o o o oJogo o o © 0 0 o0 0o O O "
? Oudm oNom Au ouOM & On
A 30 © © o 0 o © 6 o ojoFo o o ©0 0 O ©o O o OO O O O o o o 040 Bl o o0 @ © o o O cjojffofo o o o o 0o o © O © ©o¥0 © o © 0 ©6 O O O © Al
auom oNOm Ry S -1 ——f o X 11 » QU anom
" 6o o o o o6 © & b o ojJoFo o 0o O O ©0 O O O © » o§o 0 o o © o © o O OofjOFO O o 0o o 0o 0 o 0 © »
2 Quom %3 T OVOM EE— AVINIG ¥
v ©ojJo © 0 o 0o 0o O O ©g0FO0 © © © 0 O © © o © - 030 © © © © 0 0 0o O 0j0%0 0 O O O O C & 0 ° 3
ouom
“ o3 0 7 o - 5§0 o 0o 0 0 o 0 o o ofJogo o o o © O O © O O “
= ¥ - 14— . + ayom
3 o oF o o 0o 0o o o 0 O) o 0o o 06 0o 6 o o o ofloFo o o o o o o o o oJo¥o o o © 0o o o o o0 0 °
9 Quga 41X3 374n02 ONY Nd 1 LI%3 314N02 ONY N4 | 9 Q¥
4 o¥ [=303 3 — o§o o 0o o o ©0 & o O© Oofo 30 o 0 o O ©0 © ¢ O O ’
v qufs nd 0 nda v O Qe
3 oF o3 g o 3 o © o o offo3o o o o 5 o o o olojo o o o o ¢ ©0 o 0 O]
z ¥ L1X3 3IOVHOIS Nd x e m..obu._um 0 X4 Z ouom AuLN3 ¥
° o na - > v T ©o 0o o o o ©6 0 O O @ 6 © ¢ © ©o 0 o o o 0 a
os scf [N % oL oe [o L. »
2 O 0 a o o o © o 0o 0 o 0 0 0o @ © 0 06 08 6 0 0 O & 0 0 O 3
o1 ss | ot [0 os o» s o5 [»
° - ® o o o o o © o 0 © © ©0 0 6 0 0 o 0 o O O 0 O O © .
or st ot sz ot oy 3 oK < »
' —— ©o ©o 0o 0 © 06 0 6 0 0 0 © 0 © 0 © © o0 o o v
Lo; o ¥ Qu¥2 HONNJ $ A_ o v quvd ov
v S » 08 &5 BC i K KK ¥ ¢ 2 < 05 ey iy o Sy »r $r 2r ¢ Ob K K £ K K "o x B Of & M i S ST ¥ 2 T T 03 & W o L] i L] -] o H oo L3 L] 4 L] s A4 14 2 v
o
(1 #4d) LISNVUL 304
1INV TOEINOD ‘HONNJ AVIN Q¥VD LES€ES °
WILSAS ONISSIDOULVYIVG 059 T LISNWYL %04 Puo T LISNVAL ¥O4
NOILYIOJEOD SINIHOYW SSINISNE TYNOILVNEIINE S-

¥ 2 08 213 8 % %9

i

3t 1 3 x

¥ 9 O3 B 08 B B S % K ¥ (5 X K OC 6 B s % S v O I Ov &€ K 46 K S 4 €F WO O €2 W iz W R e S W T 0 & ® & W G B Lo € 8 L 0% €& » o€ 2
SN M O3LN
© o o o 6 o5 ©6 © 0 © wi 0 O 0 0 O 0O O © 0 0 -
| &ud 0uLNOD 130 29 T4 ot 0NLNOD 130 29 o |
o 0 0 60 0 0 0 0 ©0 © = 0 o © 0 0 0 0 © 9 © L
08 1111 49 MO AWiNI 130 D@ T —oi 41%3 99 WO ANAND 1N 3§ » —n! N
o o o o D 6 0o © O © ~ o o ¢ & 5 =~ 5 ¢ o offo-o-0-0f40=0=0=0=0=7 L
08 s Ly iN] 130 % ¥ 40 Vom0 AuINT 130 90 @ 40 emmm———13] 3SNeMI aVIM O ' "
© 0o 0o 0 0 0 © 0 0 © wl 6 5 ¢ o = : 2 & ¢ O o-o—olo O=0=0=0=0=0 -
09 Tou.in0d 130 D9 16] —0c 0WINGD 130 2% “ m
o 2 © © © 5 &6 ©o O © x| o o ¢ o O ¢ o © 0 o o o -~
09 13 90 40 14IN3 130 39 1G] e OF e (X3 49 MO AMANI 130 D@ T = [
c o ©o 6 C © 0 O 0 0 | o ¢ = 9 > z ° ¢ o O o ©]
09 wmm— iy IN3 130 @ 9 <0 1 e | ad 4 AWIND 130 20 9 ¢0 Iy — ———
0o o o ¢ © 0 6 0 0 ©0 #] o © o ¢ o © ©o ©° p 220 w
pov Jou1M0D 130 28 w—f ot I0uiN03 130 30
0o 0o o 0O 6 0 0 0 © @ “| o o 5 5 o © o © o o o o © 0 0 ©]
for 11K3 «9 WO AWINT 430 20 — p—0% 11X3 ¥9 MO ANIND 130 28
0O 0o 0o 6 © 0o 0 ©& o0 0o w|' ' 0o o 0 5 o ©o 0O 9 o o © o o o b
pov AWLINY 130 20 B 40 TE e ot ANIND 130 09 9 40
(*] o o 6 6 © 6 0 © O 0 o ©c o 5 0 ¢ O <] o o © o o o kd
0w1N03 130 28 15—y 0uANGD 430 28
o ©° o oo o o 0 O O O O O O B g o 3 0 0 © o0 © 2 o o} o o o | 0¥ e=pmmm—tu—" o o 0 O -~
113 49 40 AWINT 13 39 n— 0 1143 49 ¥O AMINZ 130 20 2 3
o oo o o ofo o o 0o 0o o o o 0 © #| o o 5 © 5 o o 0o 0 O ofo o olo oflo o o o »
- 3 AdIND 130 N 9 e Bl AuIND 130 o8 § 90 1 - 2 w3 3
oflo 2 o2c)j0}o}lo o239 c,ego © o0 6 © 0 & O 0 © #] 0 o 2 o o = o o o ofog0 o od20ogo0fo o _odoffo o cofodogolo o odo ov
| s foe ¥ oL s wile|s
o o o ofcloloelo oNo oc|laffo o © o o o o o o o »] o 2 o o o o o o o offo|ofof o ozooﬁooozooacozooooozo >
” 14 o | ofos € os sv wile|e
© 6 o0 vfolojojo oio ofoflo © ¢ 0o © 0o o 0o o o ([w| 6 0 o0 0o o o o o ¢ cfologof o o~coooo»ooj—ooo»ooooo»o!
3) ifor [o «?] S¥012313%
o o o o\ o ou. © 0o 0 0 6 0 © © 0 O ” © 0 o 0 o ¢ o o o CHoqQofgo} o o o ofo]{l GEp—, G—— v
Nd s ————) 29 oz Insnud IHSANE HONNJ emmmmmmmnTal 3 Y 9 § 08! S L »
- ofle © 0 0 © 0m~0 o ! s 2 o o o o o o o ofodo 4
o 5 a s$d% o@t&::g wnoff s ¥ s Jos o
o 0flc R0y o © o o 6 o o . o o o 0 5 0o o o o omo o = © o o o o 0 © ¢
or st -m- 60 o 3 Ll RERA L4 hilemntny
© oge o o o o Q . 0o o o o o o o o o offoQcfo o 0 0 0 o0 O .
boz [5 Quvd HONNd € w € S1114S NANT02 QT emmm—- 23 S¥0L9313§ 3000 OV e xe
° 830,00 0 0 0J¢ ode dgo—-—0go0—0=0go=—0 O—« o o=-0 o0=0 o=ogolN ogogoffo o o o 0d0 0 .
uM« +2¢fusnan 1 osn@ t fier gy 1o axs i1z .um omu 2
© oo owelo o o o M“Ooczo oje o-oflo~c-ofo-6 o—d.}=0 0=0 o=0c o=ocfotWJodoiofo o o o,omM0]o .
I3 X3 ns, % [
o o c oklo]o o o o Q h o e ook ofCiors ~1 _0_0o 0o o o ofoflo o o o oc1o]o "
o._—o)) T T Ny I nr "4 0go
o9 e ©o o 0o 0o o o . o 0o o v o 2 ele
Py B8 B p—a70M ¥0122135- Tow worTINgs- 03 ‘ nan foe "
ofe =0|lo © o0 0 0 © s o o 0 O g < o
W la]a wodr | @t ST Wl ' 2w e R U » eyl | 3
o o ofo-o]o o o o o o N 6 0 0 o o o
2 B m e 010+ MANE gn¥Old WOL51136 - 00 e or o8 [[
0 o 0o 6 b 0 6 0 O 0 O o
_ 61 W1 1T 19T ST el T 1T T g 0z . ouvd OV
o O o o o o O O © O O | d o o o 0 O 0,0f0 0,0 0 0 O
apos 070K ¥0123735 10Tid L e e——— . s - .
© o o 0o 0o © © 030 _.« oF
ouom om L G
© 0o 0o 0o o o ONO | CE3
9 QNOM oy
o o 6 0 0 0 010 °F Al
< 1 v e € quom
¢ 0 0o o o o 020 2 | O F »
AUINI '
©o o 06 © 0O © ONO O 0O O © 0DjQO0§0 O 0 O © O © ©°o © O .
© o © 0 0 o 010 o o o 0 ofJoFe © © © 0 © & 0 © O ~
st - L owom
o o 6 06 o 0o O O o o 0o ¢ oJoeFo © 8o 6 0o 0o o o O O B
14%3 374000 ONV 04 |
o o © © o_©o0 0 © o o o ¢ oflogo o 0 o o o o c 0 O f
ne g € o
o o © o Q o o o o oloFo o 0o © © © © 0 O © 3
ISBOLIITIS L0 g x ANLINI 3 ¥
o o o © v » v o o 0o o 0 0 © © © 6 0 © 0 O ° u o
L3 .3 SL o Ld
° o o o o o o o F
3 3 % L3 [™
6o o 0o o o “) e © ©° o o o o o o 0 o o .
€ ot o« 3 LJ »
o 0 © © © © v © o o o~ © © © o o © 0 0 0 O ¢ v
02 oNIGY3N 15N v Ouvd Qv
¥ 9 I M OF 45 85 JE 9 8 L £5 X B 05 S W % v Ev 2» b OF 6 M i€ K H ¥ ®OE WK R B A& | KN’ W IR TN T I N O D T R 2 B

73NV TOUINOD ‘HONNd Qv Q¥YD L65-EES
WILSAS ONISSID0UdY1VQ 059

NOILYSOdEOD SINIHOYW SSINISNE TYNOILYNYIINI

(€ puo 7 s910y4) 4vOS-1i
T LISNW31 304 pue I 1ISNVYL ¥03

uuve yoves

60

33303:553333%_noma-nn»q,n'vveuv3933233%: ~n_nﬁvnﬂsu‘nnucuzz_noun_-.:!o.!n_n_:9--mcnu.

¥SN W GIiINNG
w o 0o 6 6 0 © © ¢ ©J0g0—0F0-0 &N &0 0 0 0 0 6 0 0 0 O :ﬁoooooooooo b
X 09 Wouin0d 130 29 L pr== 0L ..n._:.cu —uo L]
ow]]o © © o ¢ o o o oNo o o © 6o 6 6 6 0 © O | o o @ o o o o o
00 11x3 49 ¥O ABIND 130 X0 w —0d .—,xu 49 (e >K>za 130 99 L]
L © ¢ o ©o o o o190 o ¢ o 0 0 0 0O O O © - o © 0 0 0 0 0Ofo=0=0=0=-0=0=-0—-0=0=0 -~
t < 0F =smm—— oY INI 130 09 I ¢ 0 — — p— 04 >¢»:u »uc uﬂ 9 40 e— 9 4 354N QYN O [
hd 9 o o © 0 O o o o ©o o0 o o o o wl o o o o o ©o o o© ooo—o|o|o|o|o|olol._ il
e $20:33135 3002 HONNd SN Nd | 09 T08LM07 :a u- Vg =i .IonI..o.:zoo .in u-
"~ 0_0,0 O©_ 0 O o o 0o O © o o o m~ o o o o ¢ o d
' a3 41%3 49 ¥Q)k»Zu .—uo 29 Ly | lOnI ixa ao Io >!Iu »uo el M
w o @ o o 0 0 O © * o o o o o © ™
tf1 . 1 ' ANANT 130 98 U J0 cmmm— TG e .Ilonlll».:zu .uo on v 40
"~ F o © o - © © o o © O ©° 7 0o © o ¢ © €& o 0 o b
-Ixn;(’(Ou-: 104 1N 05 e o e TM 0H1IN0T (30 08 —— w— 0% ..O(C&u 130 Qn |III¢~
v | 40 oo o o] o 0 o 0 o o o v o © o o o o o v
1 1123 49 S E:a En 28 =|.. b Of e » 40 JaNd’ Zo o8 |n.
d °¥ CI v, — SN o o o o ! o o o > o o o o -
@ QMO M e ——— AMLINT ._.un on ﬂ 99 |¢nl [lonI»x.—!u kun » l dd 14
ov oF j O [*] Q o o oF © =] 0 0 o Q ° [Q o Q o B c o o] =] o o [} o kad
9 & Ouom 40:»300 »uo on 1 ._Oﬂhg »wc un
-~ o3 1 o o ofe ofoZ ofo o Jo oo o © o © © o © 6 - < o B O d
T 14 € ouop X3 La xo >x»2u .—un 2. T — .:xu le ‘0 >->2u -un 28 1
b o) olo oo ol e—teptrmeteme [0Jo o0 Jo cfo o 0o o O o o o o @ 5 o0 .0 »
2 11%3 WKO»m T QuOm AMINI 130 S d &4 T o— >x-2u —uu on H &0
av oo oo o0do,0 o odJojo olo]odoglo,ogo © ¢ 0o 0o o 0o o 0o 0O av o o o © o o o © o o?%0 o
6 & Qos L oL “ w
Ead o o o o cNO o o o oNO o o =] =] O o =} o] o o o o o o o L] v o 2 o o o Q o e} e o o oNo bl
&1 +1 q 9| eoQos 56 os s W L
L [K olo ofole o ¢ ofoje oo oflofjocfo o o © © 0O © Q¢ 9P o o o 0 o o o0 © o ©° o 510 b
sufu23135- 03 1z for s (8) (&) o 52 ©
™ ole ojo oHoflo o © o o © o o o ¢ © o0 o0 ©O o © o ™
—hﬂ b 9 9 N 9 O SIS S3HSNYO HONAY IQ—Iwuwaln HON N J E— | 19
1 ocnof o o o° 2 o © © © ©o o 0o ¢ @ﬂ -3 z
[:1] D —————" L NORMWOD
‘ “* @0 d P o o - o 6 © o o o o © o —— ” ‘
TE 0O 5 2
Qo © o0 0o M§o [> o . o 0 O O o O :
< 2 0uvd 1 w £ 5S NWNT0D Qv 3y SN X- 2T S ¥ D»uu.—uw 3002 n<ut|« ! b
0 J O =0 gQ—0=0O@g0—0 QO==us—0 OwQ O=0 O=0 -
Wu wnan J oo sne e e g1 101 1xt A ﬁ
39 o-coflo-0o=0fo=-0 O==.p—0 o0=0 O0=O0 O=0 »
1) UR-Ia g IS W OV 3ISINdNI OV
n i o o 0 o 0.0 - 0O O @@ =8 G==8 O "
ey 0 195 05T w7 gt 12T ot 1L e ® YL B K w K 2
09§ o [0 /N0 o o o o o 0 L O O § Gmumd Gm=g Qu=b Pp “ .
9 b1E A ERELS 0MW MO0L123713S -)
[V K3 o o 0o o o 0 O s o > o 4
[LS V o1 ISt Wl gt 2t v) [»
- —— o o o o o o o o WKeS, o o of o _oJo |¢
or sel | os] 1l w2l |G Pmsne EPRTICE S <3| e
0 d o o 0 O IS I3 O b Gt Ot o T 2 K ~
¥ 3 I K 7 w1 8 .: .9 .nq .! .ﬂ .- w VT E ® UL B K W oK 2 u
n& o050 ofofolofo) o o o ° B — Gt G Gemg b o ofo ofolfe o U0 lo
T 6§ 0y a._Ox Io»uu._um »ofnll —
s = EX o > o090 RG] o ofo o] offe o fo fo
O F et ! 6 o™ o o © o o ONO 0 . 5 o o cfoeflos offe o fo }o]
govds Lwﬂ.oa awg
o3 s 0o o ¢ 6 © o © 0l0 h o ¥ o o o ofolfoFed offe ¢ lo o "
au 2 <t -ii—— .J
oF : s © o 0o 0 O 0o o 020 . ° o r \ tLl'lo uf ofdv” 0% o o Jo lo »
11X3 29vN T oyom I 3.0
©g40%F o o o o ofofo © o o o o ¢ ©° ONO . o m [OXOX] @8@ o%e 53 o r
\ A4 Y ——W e ||l
ojoso o o o o o © o0 o 010 - o o] T oF 3% 3 g
33 MEE - s —— [Qu L ougm
ool Q9 o o o © o © o 0 O 5 2 UIH@ oflcd oF £}
11x3 374N02 ONY Nd | X3 nod Ny Néd 9 Ou ou
o | ol OO0 © O © o o i =) 23 o3 4
na a e oo € ou
obo o o o oYe ¢ ofo o jo 0 § qu oFe - X 3
%3 39V 8012373% 104l LI SHNOLIIPS H ANINI \
o =] k= - - O - - 9
™ s o o | »
\p— B
o s o% s L s o5 w | w
o © o o o © o .
o» o ot [3 ot [] 12
v e o o 0 0 0O 0 © @ o0 O - M
ot < 02 w— ONIOYIY LS U v Quvd) aviN Ted
v 9 % M 09 6 O% 5 ¥ % v e 2 v w Oy & &K it K wle] % L o »” - » o n no oo £) L] i i] 1] v L 4 3 '
LAO (soso4d 11V)
1INV JOUNOD ‘HONNG VI Q¥YD LE5-EES (SMI LISNVYL 304 pue (S)I LISNVUL 304
WILSAS ONISSID0UdY1IVa 059 —vvm savns

NOILY¥O4EOD SINIHOYW SSINISNE TYNOILYNEILINI s‘—

61

APPENDIX B - LISTINGS OF CARDS FOR EACH PHASE OF PROCESSING OF
SAMPLE PROBLEM 4 - MATRIX MULTIPLICATION

Listing of FOR TRANSIT Source Program Statement Cards for FOR TRANSIT 1
and FOR TRANSIT II

COO000RECTANGULAR MATRIX 99999999999999999999
C00000 MULTIPLICATION 99999999999999999999
DIMENSION At445) 99999999999999999999

1 Bi5,43) 99999999999999999999

READ 1sAsB 99999999999999999999

READ 1leNsMyL 99999999999999999999

7000 & J=leN 99999999999999999999
10D0 4 I=14M 99999999999999999999
60SUM=040 99999999999999999599
2000 3 K=1,L ©9999999999999999999
305UM = SUM+A(T4K) * 99999999999999999999

31 B(KsJ) 99999999999999999999
40PUNCH 1s SUMy IsJ 99999999999999999999
80END 99999999999999999999

Listing of FOR TRANSIT Source Program Statement Cards for FOR TRANSIT I(S)
and FOR TRANSIT IKS)

C RECTANGULAR MATRIX
C MULTIPLICATION
DIMENSION A(445)s B(593)
READ 14A+8
READ 1sNsMsL
7 DO & J=19N
1 DO & I=1sM
© & SUM=0,0
2 DO 3 K=1lslL
3 SUM = SUM+A(TsK) * BI(KsJ)
4 PUNCH 19 SUMs TsJ
8 END

NOTE: Sample problem 4 provides a test case for the system. Itis recommended
that the source program be processed through each phase of the system
and the output for each step compared with the appropriate listings in
this appendix.

63

8000
%000
€000
€000
¢000
2000
9000
1000
1000
L000
1000
0000
0000

34
3 6€10 %1l1ivlL
d Y2HISY6EIXGISST
AAXHON I SUZNIXHPISUIWTITASTHAZIYA
4 A BeEIN 1

A T A Znine
4 or 0ZTI%A
4 A Leld T

A T A ovIdYy
E A 9¢eld 1

A 1 A 6EINY
40 8ell €l9¢l
E[¢ 1200 6111000021

+ + 00000000008%

-

‘s1UoWaeIS LI oY Pa3331d 0} PAAON U3¢ SBH UYIIYM ‘pPIeD IspesH LI 3yl
pue sjuswajei§ LI Jo Sunsisuo) aseyd uonersuer], woxy nding jo Junsry

+8
+%
+€
+e
+Z
+2
+9
+1
+1
+L
+L

64

Listing of Output from Compilation Phase of
FOR TRANSIT I: The Program in SOAP II Symbolic Form

ES000
LAAAA

ESQ00
LABAA

FS007
LACAA

ETO020
ES001
LADAA

FTO24
ESCO06
LAFAA

Fs002
LAFAA

ETO31
€S003
LAGAA

REG

RAL
STL
RAL
STL
RAL
LDD

00
RAL
STL
RAL
STL
RAL
STL
RAL
LDb

RAL
STL

00

00
RAL
STL

00

00
RAL
STL

00
RAL
STL

00

00
RAU
MPY
ALO
SLY
ALO
RAL
STL
RAL
STL
RAU
MPY
ALO
STL
RSL
ALO
SLT
ALO
RAL
STL
RAL
LDD

Y0002

0000
EZ001
w0002
EZ002
w0003
EZ003
LABAA

0000
gzZooa
w0002
EZ005
w0003
EZ006
WnNoo&
EZ007
LACAA

nnoo
EZ008
Y0039

0000

0000
EZ008
Y0040

0000

0000
Fz009
Y0041

nooo
€z008
Y0042

0000

0000
Y0039
EZ010
Y0042
Y0003

YOC1l5
w0000
Y0040
w0001
Y0042
EZO11}
w0001
w0001
EZ011
wWonol
Y0003

Y0000

ACC
w0000

65

0043
LAAAA

EQO0AQ
LABAA

E00AQ
LACAA

LADAA
LADAA
LADAA
LAEAA
LAEAA
LAEAA

LAFAA
LAFAA

LAGAA
LAGAA
LAGAA

8002

8002

EQ0AJ

T200001T15
21
DF

T36T3 7738
DF

139 Z

[40 Z

Y4120 JO

142 2

Y&G1ZY&41SYL
LM&4RSL4X14
2RST&ORXYL
15SL5X139R
S142R

F

ES000
LAHAA

ES000
LATAA

ES004
LAJAA

ES000
LAKAA

ES000
LALAA

ES000
LAMAA

£5000
LANAA

ES008
LAQAA
EZ015
FI014
EZ013
EZ012
£2011
EZ010
EZ009
EZ008
F2007
FLZ006
EZ005
22004
€2003
Fzonz
FZOO1

RAL
LDD
STL

00
RAL
ALO
STL

RSL
ALO
BMI

RAL
STL
RAL
STL
RAL
STL
RAL

Y0041

Y0041
0000
EZ008
Y0042
Y0042
0000
8002
Y0038
LAJAA
0000
£2012
w0002
EZ013
w0003
E2014
w0004
EZ015
LAKAA
0000
EZ008
Y0040
Y0040
0000
8002
Y0037
LAMAA
0000
EZ008
Y0039
Y0039
0000
8002
Y0036
LACAA
nnoo
8000
0003
0000
0000
0000
0000
0000
0000
0000
0003
0000
0000
0000
0002
no20
0015

E00AL
LAHAA
LAHAA

LATAA
LATAA

ETO031
LAJAA

EOO0AR
LAKAA

LALAA
LALAA

ETO2¢
LAMAA

LANAA
LANAA

ET020
LAOAA
8000
0004
0nal
0040
0039
0004
0005
0000
0001
0000
0036
0037
0038
0009
0001
3021

42 L

142 S

1

G 000C
IF 138

W 142
T4lT4 OF39
ia0 ¢

140 S

1

G 0000
1F 137

W 140
139 ¢

133 S

1

G G000
[F 136

W 139

Listing of Output from Compilation Phase of
FOR TRANSIT 1I: The Program in SOAP II Symbolic Form
L]

F£S000
LAAAA

ESQQ0
LARAA

ES007
LACAA

£7T021
£5001
LADAA

ET026
ESQ06
LAEAA

£5002
LAFAA

FTN34
£50013
LAGAA

REG

RAL
STL
RAL
STL
RAL
LDD

00
RAL
STL
RAL
STL
RAL
STL
RAL
LDD

RAA
LoD
STD
00
00
RAB
LDD
$TD
[o]¢]
00
RAU
STU

RAC
LDD
STD

00

00
RAU
MPY
SLT
ALO
RAU
STU
RAL
STL
RAU
MPY
ALO
STL
RSL
ALO

Y0002
0000
EzZOOl
w0002
EZ002
w0003
£2003
LABAA
0000
EZ004
w0002
£2005
w0003
EZ006
w0004
£2007
LACAA
0000
Y0000
8005
Y0039
0000
0000
Y0000
8006
Y0040
0000
0000
£2008
Y0041
0000
Y0000
8007
Y0042
0000
0000
800%
EZ009
Y0003

6016
w0000

800¢
w0001

8007
EZO10
w0091
w0001
EZ0O10
w0001

66

0043
LAAAA

EQO0AQ
LABAA

EQOAG
LACAA

LADAA
LADAA
LADAA

LAEAA
LAEAA
LAEAA

LAFAA
LAFAA

LAGAA
LAGAA
LAGAA

8002

T200001T15
21
OF

T36T3 7738
DF

Y41ZY41SYL
LM4RSLGX] 4
2RS I 4O0RXYL
155L5XI39R
SI142R

F

ES000
LAHAA

ES004
LATAA

ES000
LAJAA

ES000
LAKAA

£5008
LALAA
£2014
£2013
£2012
E2011
EZ010
£2009
EZ008
Ez007
£2006
FZ005
EZ004
E2003
E2002
£2001

SLT
ALO
RAU
FMP
FAD
STu

00
AXC
RSL
STD
ALO
BMI

00
RAL
STL
RAL
STL
RAL
STL
RAL
LDOD

AXB
RSL
STD
ALO
8MI

AXA
RSL
STD
ALO
BMI
00
NOP
00
00
00
00
00
00
00
00
00
00
00
00
00
00
ROP

Y0003

Y0000
w0000
Y0041
Y0041
0000
Y0000
8007
Y0042
Y0038
LAIAA
0000
EZ011
w0002
E2012
w0003
E2013
W0004
E2014
LAJAA
0000
Y0000
8006
Y0040
Y0037
LAKAA
n000
Y0000
8005
Y0039
Y0036
LALAA
0000
8000
0003
0000
0000
0000
0000
0000
n000
0003
0000
0000
0000
0002
0020
n015

8002

LAHAA
LAHAA

ETO34
LATAA

EQOAR
LAJAA

ET026
LAKAA

£1021
LALAA
8000
0004
0041
0040
0039
0n04
0005
0000
0000
0036
0037
0038
0000
0001
0021

T41T4 0739

F

7842220086
7842220087
7842220088
7842220089
7842220090
7842220091
7842220092
7842220093
7842220094
7842220095
7842220096
7842220097
7842220098
7842220099
7842220100
7842220101
7842220102
7842220103
7842220104
784222010¢
7842220106
7842220107

7842240078
7842240079
7842240080
7842240081
7842240082
7842240083
7842240084
7842240085
7842240086
7842240087
7842240088
7842240089
7842240090
718462240091
7842240092
7842240093
7842240094
7862240095
7842240096
7842240097

Listing of Output from SOAP Phase of FOR TRANSIT I:
The Object Program in Five-per-Card Form

0000000000
6500750129
6501240179
6900841913
0000000001
6500470001
0001000301
3500040107
2019670070
6600500055
2000000053
2000420195
0000000000
6500490103
2019700123
1500410245
4601960044
0000000000
0080008000
0000000004
0000000036
0000150021

6500520057
6900821913
2019690122
0000000007
6500870141
2000420045
0000000003
1500608002
6000430147
1519670271
6519660321
0000000000
6680020155
2019680371
6501260181
2000410094
0000000000
6680020051
0000030004
0000000005
0000000037
0000000037

2019680071
0000000000
6501250229
6500870091
2000410044
0000000002
6000400095
6500160171
1900500120
3500040131
6901741902
6500870241
1500390143
6502240279
6501841907
0000000000
6500870341
1500370391
0000000041
0000000000
0000000038
0000000038

6500740079
6500850089
2019700073
2000400093
0001000204
6500870191
1900480068
2019660069
1519670221
1501348002
6500420197
1500430247
4601460046
2019690172
0000000000
6680020153
1500400295
4601440093
0000000040
0000000001
0000020000
0000020000

2019690072
2019680121
6500760081
0001000200
0000000006
2000430046
1500430097
6500410145
2019670170
6500010105
6501001852
2000630096
0000000004
6501750329
6500870291
15003801913
2000400243
0000000008
0000000039
0000030000
0000200001
0000001999

0000199900
0072012900
0121017901
0081000000
0000009301
0044000100
0000000000
0037010700
0145007001
0170005502
0105005303
0100000001
0000009601
0146010303
0325012301
0291024500
0193000001
0000024300
0144012601
0050004800
0125012400
0052000000

Listing of Output from SOAP Phase of FOR TRANSIT I1I:
The Object Program in Five-per-Card Form

0000000000
6500750129
6501240179
6900841913
0001000201
0001000206
8800010051
6080050053
2119660069
1519670221
1501348002
0000000000
4601960096
2019690172
0000000000
4602460044
1500370091
2000000041
2000000000
0000020000

6500520057
6900821913
2019690122
0000000007
0000000001
0000000006
6980070107
1900560126
6580060077
2019670120
6000010105
5800010101
0000000004
6501750329
5200010190
000000000C
4601440093
0000000040
0000030000
0000200001

2019680071
0000000000
6501250229
8000010090
8200010049
6000470001
2400430096
3500040087
2019670070
6600800135
3919660066
6680070059
6500990103
2019700123
6680060097
5000010102
0000000008
0000000039
0000000036
0000150021

6500740079
6500850089
2019700073
6980050046
6980060055
2100420045
0001000304
1501408002
6080070127
1519670271
3200420119
26400430146
2019680321
6501760181
2400410094
6680050109
0080008000
0000000004
0000000037
0000000037

2019690072
2019680121
6500760081
2400400093
2400410044
0000000002
00000000013
6060160171
1900800050
3500040131
2100420095
15003901423
6501740279
6901841907
1500380193
2400400243
0000030004
0000000005
0000000038
0000001999

0000199900
0072012900
0121017901
0081000000
0000000000
0000000000
0045005101
0096005301
0171006900
0050022101
0131013401
0000009501
0143000001
0279017203
0000018401
0193000002
0243009100
0175017400
0047007601
0075007400

5700710079
0000820089
2202290073
8400910000
4100000000
0000450191
4600950068
6001710069
4701200221
7101310134
2101740197
9502410247
5501430000
7102790172
8100000184
0000940153
9603410295
5103910000
7502240049
4700870076
8500750074
0000001980

5700710079
0000820089
2202290073
8400900046
9300490055
4400010000
0700000000
2600870140
7700700127
2001350271
0500660119
0100590146
9601030321
2901230181
9000970094
4601020109
0001440176
9900800056
2501240085
5200001980

Note: The above listings do not include the SOAP-PACKAGE cards

produced by the SOAP Phase. Accordingly, the card serial

numbers (word 1, columns 8-10) begin at 86 and 78, respectively.

67

#000210000 0000000000 0000000000 0000000000 0000000000 £000000000 %000000000 €500000691
#»0001T0000 0000000000 0000000000 0000000000 0000000000 €000000000 €000000000 £€S00000%2¢
#000010000 VO000ULVOU 0OYOLUOLOVO 0000000000 0000000000 €000000000 2000000000 1500000008
»000600000 0000000000 0000000000 0000000000 0000000000 €000000000 1000000000 €5000006€1
2000800000 J0000UUOOV 0VYOVOVOO0 0000000000 0000000000 Z000000000 %000000000 £€500000Z61
#000L00000 000UOVOVO0 VOUOUO0000 0000000000 0000000000 2000000000 €000000000 —£50000029¢
000900000 0000000000 0000000000 0000000000 0000000000 2000000000 Z000000000 2500000069
4000600000 0000000000 0000000000 0000000000 0000000000 2000000000 1000000000 —€500000001
¥000%00000 0000000000 0000000000 0000000000 0000000000 (000000000 9000000000 —-£500000991
#000€£00000 0000000000 0000000000 0000000000 0000000000 1000000000 €000000000 €500000€0¢
#000200000 0000000000 0000000000 0000000000 0000000000 1000000000 2000000000 —€500000011
%¥000100000 0000000000 0000000000 0000000000 0000000000 1000000000 1000000000 ZS0000008%
wexdoxd 109lqO woiy spie) (xamsuy) indiny yo Junsry
1000000000 $0000000V0 %70V00V00VO €000000000
9000000000 26U00000TT -T160000000§ 2500000001 -150000000% 1600000004 =1500000006 1$40000000€
6000000000 ~TG0000000Y 26000000€1 150000000¢ 1600000002 2500000021 1600000009 -1$00000008
#000000000 -160000000¢€ 1600000006 200000081 -2500000021 1600000005 =150000000¢2 200000011
€000000000 -2600000001 1600000002 160000000¢ 2500000041 1500000008 ~1600000004 260000001
2000000000 -1500000009 T60000000T =Z$000000€T 25000000%1 1600000001 1500000002 2500000091

wexdoxg 109[qQ 107 spxe) e1e(Induf yo Sunsty

T -6
691 z61 -99T| |- ¢
vze -z9z gog| _ | o1 -¥
8 69 -OTT| |-p &I
66T -001 8F L s

9

4

(44 6 -T
8T IT
-8 -1 -01
-€ S T

X

LT ¥1

ST -9 1

I z
-1 91

'$ warqoxd sjduies yim pasn eiep ndinQ pue anduf I0J X1I3BW I9Msue pue wa[qoid [emOy

S 3

68

dod 9¢
0008 voose dON wwev 1l 5¢ d0d 14
vvavil 0000 00 00053 ve 0008 0008 dON wvavl %e
vvavl T000A NiS 74 wwevil 0000 00 00054 4
Yv003 aan e¢ wwevl 1000A S €
%¥000d dON 1¢ ¥000d dON 1¢
Y003 aan 0¢ ov003 ual (Y2
20004 NVY ol 20004 vy ol
%0004 ALS ul ¥000d 1S Bl
£000A NV L1 £€000A VY L1
£000d LS vi €000d WS 9l
YUUOA VY 9l %0004 VY sl
20004 1S vl 2000d 1S vl
$000A NVY €l S000A v¥ el
1000d ALS el 1000d S ¢l
2000d dON it 2000d dON [
NV003 aan ol Nvoo3 aan ol
9000A VY 6 90004 Vi o
€000d nis v 4 2000d s o
LO0OA nvy L LO00A vH L
D6A ADBAM 1000d A4S 9 D6A ADBAN 1000d 1S 9
LAN9ANIE1O 8000A vy % LANQANIETD 40004 V¥ s
AGANPANEAN 0000d 04S v AGAATANE AN 0000d 1S ¥
ZAN39LDZIA 60V0A NVY VYVl € ZAN391DZ1A 60004 VY wyvya 1
vYVVl 0000) 000534 ¢ YYYV1 0000 00 00053 e
0100 2000A 93y 4 0100 20004 93¥ 1
urro] orfoquiig [dvOS ur weidoid oyl wrog Jrfoquidg [T dVOS ur weidoid syl
-IT LISNVYL 404 jo ‘I LISNVYL ¥O4A 30
aseyq uonerrdwo) woxy inding jo Sunst aseyqd wonterrdwo) woxy inding yo 3unsiy
34
4 D6A ADBAN
LANGANIETOAG AN ANEANZANIOTIOZTA
+ + + +0000000001
"aseyd uone[suel], woiy ndinQ ‘sjuswalels II Jo Sunsty
66666666666666666666 aN3
666666656666666666666 (He (D¢ 437
66666666666666666666)4UNI€QeD¢a¢Y)41N0=A

spae) juswaels weidoxd 22I1n0S LISNVYU.L YOI Jo Sunisi

"SINFWNOYY HTJILTAN A0 SNOLLONNA HLVILSNTTI OL SaGYVvD J0 SONILLSI'T

69

APPENDIX C

Glossary

FORTRAN System - An automatic coding system originally designed
for the IBM 704, intended primarily for scientific computation.

FORTRAN Program - A computer program written in the FORTRAN
language.

FORTRAN Language - Statements closely resembling the language
of mathematics which are acceptable to a computer as a source
program.

FOR TRANSIT System - An automatic coding system for the IBM
650 which uses the FORTRAN language for its source programs
and gives optimized machine language programs as output.

Source Program - The input to an automatic coding system. In the
FOR TRANSIT system the source program consists of FORTRAN
statements .

Object Program - The machine language program which is the final
output of an automatic coding system.

Compile - Create a series of sequential machine instructions for
actual operation by processing source program statements.

Assemble - Assign actual machine language addresses and operation
codes to symbolic addresses and operation codes.

Optimize - Select memory lecations which have minimum access
time for each operation.

FOR TRANSIT Deck - Cards containing instructions and tables for
the 650 processor program which translates FORTRAN statements
into IT statements.

IT Deck - Cards containing instructions and tables for the 650
processor program which compiles symbolic machine language
instructions from the IT statements.

SOAP II Deck - Cards containing instructions and tables for the 650

program which assembles and optimizes the output of the IT deck
to create a machine language object program.

70

Abbreviations and Acronyms

FORTRAN FORmula TRANslator

FOR TRANSIT FORtran TRANSIlation to IT, or FORTRAN,
SOAP, IT

1T Internal Translator

SOAP Symbolic Optimal Assembly Program

71

B

International Business Machines Corparation
590 Madison Avenue, New York 22, N.Y.

Printed in U.S.A, C28.-4028

